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Generalized Adiabatic Invariants in One-Dimensional Hamiltonian Systems
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The concept of adiabatic invariance in one-dimensional Hamiltonian systems H(p, q;).) is generalized
to include the case when the time derivative of the slowly varying parameter A, is given by

f(H, X)vp(q, p), where f and p are arbitrary functions, and q and p are the canonical coordinates.

PACS numbers: 03.20.+i

Adiabatic invariants are well known in classical Hamil-
tonian mechanics [1,2]. They represent quantities which
are conserved to a high degree of accuracy in a system
that undergoes slow changes. In 1911, A. Einstein re-
portedly demonstrated the adiabatic invariance of the ac-
tion integral for a pendulum with a slowly varying length
[2], and since then, a large number of works have been
devoted to the study of adiabatic invariants; see, for ex-
ample, Refs. [3-5] and the literature cited therein. Ap-
plications and generalizations have been found in many
fields, such as space and fusion plasma physics [6,7],
celestial mechanics [8],quantum mechanics [9], and non-
linear wave propagation [10]. In this study, we show that
in one-dimensional Hamiltonian systems a generalization
of the classical adiabatic invariant can be constructed,
which is conserved under much more general time varia-
tions of the system parameters than what is required for
the conservation of the ordinary action integral.

Consider a system described by some Hamiltonian
H(q, p;lj, (t)), which depends explicitly on time through
the parameter A, (t). If the system executes finite oscilla-
tions, the action integral is defined by

I pdq,

where q and p denote the generalized coordinate and
momentum, respectively. The integration in Eq. (I) is to
be carried out over one period of oscillation at fixed
values of 1L, and H; thus p p(q, H, ),) and I I(H, A, ).
The action is known to be an adiabatic invariant. This
means that, if A, is approximately constant, i)T/1)i=1m
&&1, where T is the period of oscillation, and the time

variation of k is also of order s, then I changes little in

comparison with s during one period of oscillation:

ht+T.
Id«& sI. (2)

k -f(H, X)q (q,p), (3)

we have found that a generalized adiabatic invariant J
can be constructed,

1
h

J- y(q, p)dq, (4)

where By/Bp v&(q,p). In order to demonstrate that this
indeed is an invariant, we show that its average time vari-
ation vanishes. The time derivative of J is

BJ BH BJ
BH B)E, +W,

dq+ v dq f(H, X)v(q,p).1 BH Bp p

(s)

Averaging this expression over the period of one oscilla-

4t
In actual fact, for one-dimensional systems, the action
has been shown to be adiabatically conserved with ex-
ponential accuracy [3,11], i.e., to all orders of s, not only
to the first order, as indicated in Eq. (2).

In the case when the parameter )I, changes slowly, but
its time derivative X varies rapidly, the action is not con-
served in general. However, if 3i, is related to the state of
system by a function of the following form
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tion, and using the equation of motion q =BH/ap, we ob-
tain

ap t pdq+„w dqJ &pf(H, X)
H p

BF2g=
ap

, q, t

BFi BF2

aq &, aq

F)
(12)

where the brackets () denote the averaging. Because of
the slow variation of X and H, f(H, X) need not be aver-
aged in Eq. (6), and the averaging can be taken over the
motion which would occur if A, remained constant. More-
over, since

BH
g "

ap , Q, i

Bg
at

(i3)

where again ay/ap=+(q, p). From the equations of
motion and Eq. (11), we find the time derivatives of the
new phase space coordinates,

BH
N.

BH p BH

ap R N. (7) aH apP= —p
ag „at

Eq. (6) shows that, to the requisite accuracy, we have
(J) 0, and thus J is a first-order adiabatic invariant.
The invariant J is a generalization of the ordinary adia-
batic invariant I. In the case when the function p is con-
stant so that A. varies steadily, I and J are equal; if p is
not constant, I and J are in general diff'erent. The pa-
rameter X is then subjected to small but rapid fiuctua-
tions, and the adiabatic invariance of I breaks down, as
noted, e.g., in Ref. [12]. The generalized adiabatic in-

variant, J, however, remains constant.
The invariant J can be written as

Pq
So(q, I,A, ) =g pdq (io)

as a generating function, see, e.g., Refs. [1,2). The gen-
eralized adiabatic invariant can be obtained in a similar
manner, but canonical transformations cannot be used.
Instead, we shall consider more general transformations

Q =Q(q, p, t), P =P(q,p, t) satisfying

8(g,p)
=v (q,p) . (i I)

8 q,p
Quite analogously to the case of ordinary canonical trans-
formations, this implies the existence of generating func-
tions F&(q, g, t) and F2(q, P, t) such that

J= — pdqdp.

This shows that J is invariant under canonical transfor-
mations, since in going over to new canonical coordinates
(Q,P), the area is preserved,

8(g,p)
8(q,p)

which implies that dq dp can be replaced by dg dP in Eq.
(g).

The customary way of introducing the action variable
in classical mechanics is by carrying out a canonical
transformation using the abbreviated action

which, by using Eq. (12), can be transformed to the fol-
lowing equations of motion:

BH
ap

aF2
ap i at qp

(i4)

t'g
S(q,J,X) F2(q, J,X) = ydq, (is)

where J is defined as before, Eq. (4). The Hamiltonian
then becomes independent of the angle variable 6, and
the equations of motion (14) read

„aH a as
BJ BJ %, '

8 as
ae N,

To the first order in s, we can neglect the second term in

the equation for 8, and consider the generalized action J
as a constant on the right-hand sides of Eqs. (16). If X is

as in Eq. (3), the variation of J over one period then van-

ishes:

t g+T
hJ= Jdt =—

r"~+» a as ~p
aa W. v BH/BJ

which again proves that J is a first-order adiabatic invari-
ant. This result can be strengthened by introducing a
new time variable r by dr/dt =w and writing f(H, A, )

BH 8 BF2"ag„ag„at
Apart from the extra factors y, these coincide with the
usual, canonically transformed equations of motion.

Armed with these results, we can now introduce "gen-
eralized action-angle variables" (8,J) by carrying out a
noncanonical transformation with the generating function
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eg(J, A, ). We then have from Eqs. (3) and (16)

ds
d0
dr
dJ
ds

-eg(J,x),

aH u aaS
aJ

+ d. aJ W,
'

d) a aS
dr t)0 N.

(is)

If now g only depends on A, and not on J, we can solve the
first of these three equations and obtain ),(er). The
remaining system then coincides with the usual system of
equations for action-ang}e variables in a system with a
slowly varying parameter, which implies that J is con-
served with exponential accuracy [11].

As a simple example of a generalized adiabatic invari-

ant, we can consider the following harmonic oscillator
with a slowly varying, but rapidly fluctuating frequency

2 ~W~ 2~ (2H —m'q')"J~-
tr" o 2n+1aq ™+b

x (2H m2q2) i/2dq

(2nt —I)!!(2H)~+ (2n —I)!1 (2H)" +
a +b

(2m +2)'!! m2~+' (2n +2)!! m

(20)

and represents a conserved quantity, provided b(m) is

sufficiently small.
As a second example of the use of the generalized in-

variant, we consider the propagation of a weakly damped
plane wave in a medium where the permittivity e and the
conductivity cr depend on the wave amplitude. The
Helmholtz equation reads

d E +k [n(IEI ) ta(IE I )]E 0, (2i)
dx

where E is the electric field, x the coordinate in the direc-
tion of propagation, and k the wave vector. Introducing
q, p, andXby

q(x)e ike(x)—
(22)

~-q'"',
dx '

we can rewrite the imaginary part of Eq. (21) as

)t -—kq'o(q), (23)

H- —,
' p'+ ~ m'(t)q',

m-a(m)(aq' +bp'") .

Here a and b are constants, and b(m) denotes any func-
tion of the frequency m. Note that m(t) is to be con-
sidered as an explicit function of time. The generalized
action J becomes

&/2tq~ g2J —— cr(q)q 2H —2V(q) — dq~ 4 qaun 2

where q;„and q ~ are the roots to the equation

H V(q)+A, /2q

(25)

(26)

Since J represents a conserved quantity, the solution to
the Helmholtz equation is now easily obtained. In the
linear case, for instance, when e and o are independent of
the amplitude q, the constancy of J implies that H$

H —eX is constant. From the relation
i/2

dH ~ H —Ho
H k —ko (27)

cfA, 8

and Eq. (24), we then find

H Hocosh(kctx/o' ),
q (I/o)(H+Hocos2ko'/ x) .

(2s)

(29)

In the nonlinear case, the solution, though more compli-
cated, is similarly conveniently obtained by using the in-

variance of J.
In summary, we have constructed a generalization of

the classical adiabatic invariant in one-dimensional Ham-
iltonian systems, which is conserved under more general
conditions than the classical invariant. In view of the
universal applicability of adiabatic invariants in physics,
the generalized invariant can be expected to be useful for
a variety of physical problems.
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