Interfacial Stiffness and the Wetting Parameter: **The Simple Cubic Ising Model** 1.2

Renormalization-group (RG) theory [1] for $d=3$ dimensions predicts that critical wetting transitions display strong nonuniversality controlled solely by the numerical parameter $\omega(T) = k_B T/4\pi\tilde{\Sigma}(T)\xi_0^2(T)$, evaluated at T_{cW} . Here $\tilde{\Sigma}$ is the stiffness of a rough interface separating coexisting bulk phases, while ξ_{β} is the correlation length of the phase β which wets the wall. However, Monte Carlo simulations for the simple cubic (sc) Ising model by Binder, Landau, and Kroll (BLK) [2] detected no nonuniversahty. The initial results seemed consistent with classical theory as given by $\omega_{\text{fit}} = 0$. Later analyses [3], however, suggested that the data for T_{cW}/T_c \approx 0.6-0.9 might be as well described by $\omega_{\text{fit}}\approx$ 0.25 or 0.30. Note that T_c is the bulk critical point while the interfacial roughening temperature is $T_R \approx 0.54$ T_c [4]. BLK point out the difficulty of estimating ω (see also [3(b)]); but, quoting Ref. [5] for ξ_{β} and allowing for the (then) larger uncertainties in T_R , they found ω_R $\equiv \omega(T \rightarrow T_R^+) \approx 1.0 \pm 0.2$, close to then current estimates $\omega_c \approx 1.2 \pm 0.3$. Thus the simulations disagree strongly with RG theory.

We have carefully reestimated $\omega(T)$ for the sc Ising lattice and conclude that the BLK estimates are significantly too large; see Fig. 1. Specifically, we find ω_R $\approx 0.51_2 \le \omega(T > T_R)$ and $\omega_c \approx 0.77_5$. The discrepancy factor, $\omega/\omega_{\text{fit}}$, is thus reduced from 3-4 to 2-2.6 but remains unduly large.

The main ingredients in our ω estimates are the following: (a) recognition [2(b),6] that the length ξ_B required for RG theory is the true correlation length [5] which specifies the asymptotic exponential decay of correlations normal to the wall; (b) improved estimates of the sc interfacial tension $\Sigma a^2/k_B T \cong K|t|^{\mu}$ with $\mu = 2v \cong 1.264$ and $K = 1.58 \pm 0.05$, as $t = (T - T_c)/T_c \rightarrow 0$ = [4,7,8]; concluding from RG theory, etc.,

$$
\tilde{\Sigma}a^2/k_BT = \begin{cases} \Sigma(T)[1+qa^2/\xi_{\beta}^2 + \cdots], & t \to 0^-, \\ \frac{1}{2}\pi[1-c(t-t_R)^{1/2} + \cdots], & t \to t_R^+, \end{cases}
$$

where (c) a mean-field theory [8] indicates $q \approx \frac{1}{30}$ (close to $q = \frac{1}{24}$ for the square lattice), and (d) the step free energy $\sigma(T)$ below T_R [9] yields c via $\ln(k_BT/\sigma a) \approx \pi/$ $2c|\Delta t|^{1/2}$ [10]. For a (100) sc interface one finds c $= 1.57 \pm 0.07$ [8,9].

Conclusion (a) follows directly from a rederivation [6] of the effective wall-interface potential, $W(l) \sim e^{-l/\xi \beta}$, entering the RG theory [1]. However, BLK [2(b)] used the second-moment correlation length, $\xi_1(T)$, which at T_c^- is only about 0.7% smaller than $\xi_\beta(T)$ [5]; but, the ratio ξ_1/ξ_B falls rapidly as T drops to T_R [11]. Accurate estimates for ξ_{β} follow from Refs. [5,8,12]. To compute

FIG. 1. Wetting parameters $\omega(T)$ with ξ_{β} and $\omega_1(T)$ with ξ_1 .

 ω these have been combined with two-point approximants for $\tilde{\Sigma}$ and Σ embodying (b)-(d). Figure 1 records the mean of various optimal approximants: confidence limits are about $\pm 4\%$ near T_c but fall to $\pm 1\%$ or less near T_R . We acknowledge support via NSF-DMR 90-07811.

Michael E. Fisher and Han Wen Institute for Physical Science and Technology University of Maryland College Park, Maryland 20742

Received 25 November 1991

PACS numbers: 68.45.Gd, 05.50.+q, 64.60.Fr, 68.10.—^m

- [1] E. Brézin et al., Phys. Rev. Lett. 50, 1387 (1983).
- [2] (a) K. Binder, D. P. Landau, and D. M. Kroll, Phys. Rev. Lett. 56, 2272 (1986); (b) K. Binder and D. P. Landau, Phys. Rev. B 37, 1745 (1988).
- [3] (a) G. Gompper et al., Phys. Rev. B 42, 961 (1990); (b) A. O. Parry et al., Phys. Rev. B 43, 11535 (1991).
- [4] K. K. Mon et al., Phys. Rev. B 42, 545 (1990).
- [5] H. B. Tarko and M. E. Fisher, Phys. Rev. B 11, 1217 (1975).
- [6] M. E. Fisher and A. J. Jin, Phys. Rev. B 44, 1430 (1991).
- [7] K. K. Mon, Phys. Rev. Lett. 60, 2749 (1988); L. J. Shaw and M. E. Fisher, Phys. Rev. A 39, 2189 (1989).
- [8] H. Wen and M. E. Fisher (to be published). Note a denotes the lattice spacing.
- [9] K. K. Mon et al., Phys. Rev. B 39, 7089 (1989).
- [10] P. E. Wolf et al., J. Phys. (Paris) 46, 1987 (1985).
- [11] R. Evans et al., Phys. Rev. A 45, 3823 (1992), have independently noted that ξ_1 is inappropriate and can deviate strongly from ξ_{β} .
- [12] A. J. Liu and M. E. Fisher, Physica (Amsterdam) 156A, 35 (1989), give ξ_1 ; then ξ_B follows from $\Lambda_2/\Lambda_2 = 1$ $+8u^{5}(1 - ju)/[1 + (3 - j)u]$ with j = 1.929; see [5,8].