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Glass Transition and Phase Diagrams of Strongly Interacting Binary Colloidal Mixtures
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We used diffusing wave spectroscopy to determine the phase diagrams of binary mixtures of charge-
stabilized colloidal particles of different dimensions in the low-screening limit. As the ratio of radii
r =r~/r2 was increased progressively towards 1, the structure of the diagrams evolved from eutecticlike
to azeotropiclike and finally to a diagram where complete solubility was found, much like in atomic sys-
tems. We present for the first time evidence for liquid-glass transitions in these strongly interacting sys-
terns as the relative composition of both species is varied.

PACS numbers: 82.70.Dd, 6l.90.+d, 81.30.Dz

Suspensions of charge-stabilized spherical colloidal
particles have been the object of numerous studies in re-
cent years due in part to the many analogies that can be
drawn between their behavior and that of simple atomic
liquids and solids. Monodisperse colloidal suspensions
show crystalline [1], liquid [2], and glassy phases [3] de-
pending upon the solid volume fraction p and the range
tc

' of the screened-Coulomb potential through which
the particles interact. The (p, tc ') phase diagram has
been determined experimentally by x-ray [3] and light
scattering [4]. Variational calculations [5] and molecular
dynamics simulations [6] of the phase diagram have been
made and good qualitative agreement was found with the
experimental findings for p(0.2. One can push further
the analogy between colloidal and atomic systems, and
consider binary mixtures of colloidal particles of different
radii. To characterize mixtures, two parameters are
needed besides the total volume fraction p and tc '. the
ratio of sizes r =r~/r2 (r (1) as well as the relative con-
centration of small particles x =n~/(n~+n2), where r;
(n;) is the radius (number density) of particles of type i
Shear modulus measurements of mixtures as a function
of x and interaction strength have revealed the existence
of glassy behavior as evidenced by a finite shear modulus
in the absence of Bragg scattering [7]. These colloidal
glasses were metastable and formed ordered colloidal
compounds showing Bragg scattering when allowed to
equilibrate for months. The structure of the latter was
studied by optical microscopy and different structures
were obtained as a function of r, x, and p [8]. Glass for-
mation was also studied by observing the split in the
second peak of structure factors of mixture suspensions
[9], and a liquid-glass boundary was determined for a
particular value of r. There are very few theoretical pre-
dictions concerning the global phase behavior of colloidal
mixtures. Variational calculations of phase diagrams of
mixtures for screened Coulomb potentials have been per-
formed for diff'erent size ratios [10]. However, only
crystal-liquid phase boundaries were determined. Molec-
ular dynamics simulations have identified crystal, liquid,
and glass phases but have dealt with particular values of
x only [11,12]. To our knowledge, there has been no sys-

tematic experimental study of the phase behavior of mix-
tures and its dependence on r.

In this Letter we report results of light scattering ex-
periments on binary mixtures of strongly interacting
charged polystyrene spheres as a function of p and x in
the low-screening limit. We obtain phase diagrams for
three different values of the size ratio r. We emphasize
that these phase diagrams are not strictly equilibrium di-
agrams due to the metastability of the glassy phases we
observe. To discern the difference in dynamical behavior
between the diff'erent phases observed, we have used
diffusing wave spectroscopy (DWS), a recently developed
technique that probes the dynamics of multiple-scattering
media [13]. Within DWS, the temporal correlation func-
tion G(t) of the intensity of light scattered in the back-
scattering direction by noninteracting particles decays as
G(t) -exp[ —2y(6t/r ) 'I ] in the limit L » l*, where L is
the sample thickness and I* is the photon mean free path.
Here r (Dk ) ' is the time required for a scatterer
with diffusion constant D to move one optical wavelength
k (k 2tr/X), and y-2. For a binary mixture of two
monodisperse species of diff'erent size, r is a weighted
average of the individual values of the pure species [13].
Mackintosh and John have generalized DWS to the case
of strongly interacting particles [14]. They have shown
that for long photon paths, for which the transport of
light is diff'usive, G(t) can be approximated by G(t)
-exp[ —Zy[W(t)k 1'I [ where W(t) is the mean-square
particle displacement. This result is valid provided the
mean interparticle spacing d is larger than A, and the par-
ticle size. In our case there is at least a factor of 4 be-
tween d and the particle radii, while d and k are compa-
rable. Nonetheless, we will still use this result since the
qualitative nature of the conclusions we draw will not be
severely affected by our approximation. We stress that
the value of y may vary due to interaction effects. How-
ever, the square root singularity of G(t) at short times is

preserved in the presence of interactions [151. Conse-
quently, we expect that at short times the change in the
slope of G(t) with changing x is due mainly to a change
in ~ and not to a change in y as in noninteracting samples
[13]. We note that DWS has already been used to study
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suspensions of correlated particles interacting via short-

range hydrodynamic interactions [16].
Our experiments were performed with 1-mm-thick cells

in a backscattering geometry. Light from a 488-nm laser

equipped with a single-mode etalon [17] was beam ex-

panded to form an incident plane source on the sample
cell. Measurements were taken mainly in the perpendicu-
lar polarization with respect to the polarization of the in-

cident beam, in order to select long photon paths and en-
sure diffusive transport. In addition, since long paths are
selected, the scattering volume is essentially the whole

sample, and thus we do not have to perform measure-
ments over many scattering volumes to ensure good en-

semble averages. This latter procedure is essential in

quasielastic light scattering studies of nonergodic media
in which nonergodicity leads to reduced relative intensity
fluctuations in the scattered light [18]. The latter mani-

fest themselves as reduced amplitudes of the normalized
intensity correlation functions. Nevertheless, measure-
ments on three widely spaced regions of our samples were
made and averaged. Measurements were also taken with

parallel polarization. Insofar as the structure of the
phase diagrams is concerned, our results proved to be the
same irrespective of the polarization. In order to com-

pare correlation functions for different values of x, mea-
surements were accumulated for nearly 1 h for each value
of x, taking care that the counts on the first correlator
channel coincided. The baseline was then subtracted and
the data were normalized by the value of the first channel
after the subtraction. The multiple sample-time option in

our correlator enabled us to measure the baseline at
sufficiently long times while probing short times with high
resolution.

Mother samples of 10% mass fraction were deionized
with ion-exchange resin after which strong iridescent
colors appeared. Samples were made out of the mother
samples with given relative concentration x and volume
fraction p. The samples were carefully introduced in the
scattering cells five days after they were prepared, and
measurements were taken 24 h later. In this work, we

quote the bare physical dimensions of the particles. In
principle, effective hard sphere diameters can be comput-
ed from the form of the potential, its range, and the
charge of the particles. We have not done this since pre-
dictions based on these effective sizes fail to reproduce ex-
perimental results in the low-ionic-strength limit [4]. We
therefore limit ourselves to quoting the charge for future
reference. The latter was determined by conductivity
measurements of samples obtained from the mother sam-
ples for different degrees of dilution as detailed by
Schaefer [2]. We used polystyrene latex particles of
nominal radii 0.067, 0.0865, 0.099, and 0.160 pm. The
measured charges were (1590~120)e, (2390~ 120)e,
(3045 ~ 190)e, and (6640 ~ 330)e, respectively. These
values do not represent the total number of ionizable
groups and reAect only the number groups with nonad-
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FIG. 1. Temporal autocorrelation functions of multiply scat-
tered intensity G(t) as a function of t't2 for r 0.54, p 0.06,
and different values of the relative composition x: x 1

(crosses), x 0.9 (open circles), x 0.7 (open squares), x 0.4
(solid circles), x 0.2 (triangles), and x 0 (solid diamonds).

sorbed counterions in the Stern layer. The dependence of
the charge on the dimensions of the particles is to a good
approximation quadratic.

In mapping (x,p ') phase diagrams we determined
the boundaries of crystalline phases by the presence or
absence of Bragg scattering. No crystallographic infor-
mation about the mixtures was obtained. The state of
amorphous samples was determined by measuring G(t)
To illustrate our procedure we show G(t) as a function
of the square root of time for samples with r 0.54
~0.02, p 0.06 (P ' 16.6), and different values of x in

Fig. 1. Actual measurements were made up to 152
sec'~2x10 in order to observe saturation effects in G(t),
however, only a reduced range is shown in Fig. 1 for the
sake of clarity. For all the measurements the baseline
was determined at around 1 sec. Starting with the crystal
of small particles (x 1), the correlation function shows

a fast decay for short times followed by a slowly decaying
component which eventually saturates. This confirms our
expectation that while particles in a crystal move relative-

ly free for short times, they are confined to crystal sites
and for long times their mean-square displacement W(t)
saturates. As x is decreased, Bragg scattering gradually
disappears. In the present case, the iridescence is com-
pletely lost for x 0.9. The corresponding correlation
function exhibits a long-time decay slower than that of
the crystal due to the presence of the large particles.
Thus particles are still confined to average positions
[W(t) saturates] while the sample is amorphous. Follow-
ing previous authors [13],we call this a glass state. Note
that the possible variation of y with interactions which
would be compatible with our data at short times cannot
produce the saturation observed at long times. The be-
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havior at x =0.8 is similar to that at 0.9 and is not shown
for clarity. Decreasing x further to x=0.7, a sharp
change occurs: The nondecaying long-time component
disappears, and within the three decades spanned by our
measurements the overall behavior becomes remarkably
similar to that observed in systems of weakly interacting
particles [13] in spite of the strong interactions in the
system. We show by the solid line the correlation func-
tion obtained from a sample with the same values of p
and x in which the interactions have been screened.
Indeed, the difference between the two data sets is very
small. We thus call this a liquid state. Further decrease
of x brings about a reversal of the trend just described: A
slowly decaying component in G(t) reappears for long
times as can be noticed for x =0.4 and 0.2. The x =0.2
sample shows iridescence and a crystalline state is
recovered. The reappearance of this long time scale is

gradual in contrast to the sharp change between x =0.8
and 0.7 described above. Finally, we show G(t) corre-
sponding to the crystal of large particles (x =0).

In Fig. 2 we show three (x,p ') phase diagrams with

decreasing values of r. The solid lines, which serve as
guides to the eye, are approximate boundaries between
the crystal (open circles), glass (solid circles), and liquid
(triangles) phases. In Fig. 2(a) which corresponds to
r 0.87+ 0.03, both species are observed to be complete-
ly miscible in the crystalline state. The polydispersity of
each species (of order 2%) whose effect becomes signifi-
cant for r near 1, and the relatively small volume frac-
tions involved, precluded a more precise determination of
the melting points of the mixtures. The latter fall in the
range 0.01 ~ p ~ 0.02 for all values of x. Decreasing the
size ratio to r =0.78+ 0.04 we observe complete solubili-

ty in the crystalline state provided p is high enough, as
shown in Fig. 2(b). There is a considerable depression of
the melting point relative to that of the pure species. A

glass phase appears which is limited to a narrow strip ly-

ing between the crystal and the liquid phases. We found
difficulties in reproducing the glass boundaries in this

case since the barriers for crystal nucleation are much
lower than in the case of r =0.54 discussed below, and

minor disturbances such as residual resin beads in the
samples induced the formation of crystallites. Finally, we

show in Fig. 2(c) a diagram corresponding to r =0.54
+'0.02. There are three salient features in this diagram.
First, the melting point of the mixtures can reach values

(&-0.07) which are even lower than in the two cases dis-
cussed above and are considerably lower than that of the
pure species (0.01 ~ p~ 0.02). Second, the asymmetry
in the diagram is much more pronounced than that of
Fig. 2(b), with the crystal phase on the x= 1 side being
smaller in extent than that of the x=0 side: It is easier
to distort the lattice structure of the small particles by the
addition of a few large ones than the opposite case when

the size diAerence is large. By the same token, liquid-

glass transitions on the x=1 side of the diagram are
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FIG. 2. Inverse volume fraction p
' vs relative concentration

x phase diagrams for three values of the size ratio r: (a)
spindle-type diagram (r =0.87+ 0.03), (b) azeotropic-type dia-

gram (r =0.78+ 0.04), and (c) eutectic-type diagram (r
=0.54~0.02). Solid lines between the liquid (triangles), glass
(solid circles), and crystal (open circles) phases are just a guide
to the eye.

much sharper than those on the x =0 side, as previously
illustrated in Fig. 1. Third, there is a miscibility gap in

the crystalline state with the glass phase extending up to
&=0.1, the highest volume fraction we studied. We esti-
mate the error of the liquid-glass boundary to be about
+ 0.05 in x due to the diSculty in making a sharp dis-

tinction between the behavior of strongly interacting
liquids and glasses particularly on the small-x side of the
diagram. Though the extent of the glass phase seems to
shrink as p increases, it is unlikely for the miscibility gap
to disappear for high enough p since the pure species
themselves are expected to form glasses above p —O. I5
[3].

Our measured phase diagrams reproduce many of the
features observed in metallic systems such as alkali-metal
mixtures [19]. Thus Fig. 2(a) resembles either a weak

azeotrope or a spindle diagram, and is consistent with the
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Hume-Rothery empirical criterion according to which

complete solubility should be observed for r )0.85. Fig-
ure 2(b) is similar to diagrams of azeotropic structure
while Fig. 2(c), with the hornlike structure at intermedi-
ate values of p, resembles a eutectic diagram. We have

chosen values of r spanning a wide range of values in or-
der to observe qualitative changes in the phase diagrams.
However, any similarity between these values and those
of real metals is fortuitous since our values of r have not

been derived from interaction radii. Our phase diagrams
have been plotted as a simple function of 4 following pre-
vious authors [9-11]. A proper comparison with metallic
systems would involve the osmotic pressure [20]. Our
findings concerning the melting point depression are in

good qualitative agreement with the predictions of varia-
tional calculations [10] and the structure of our diagrams
follows the trend observed in density-functional calcula-
tions of hard-sphere mixtures [21]. [t would be interest-

ing to verify our findings using independent techniques
such as small-angle x-ray scattering.
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