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Fermi-Edge Singularity in One-Dimensional Systems
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The Fermi-edge singularity in optical spectra is studied theoretically using the Tomonaga-Luttinger
model for one-dimensional (I D) systems. Its critical exponent is obtained analytically for an arbitrary
mass of a valence hole taking into account the electronic correlation. The exponent is found to be
independent of the hole dynamics in ID, which is in striking contrast to the 2D and 3D cases. Weak
repulsive interaction among the conduction electrons sharpens the power-law peak in the edge spectrum.

PACS numbers: 78.65.—s, 7 l.45.—d, 78.70.—I
One-dimensional (1D) structures made of inorganic

I I I-V semiconductor compounds, "quantum wires,
" have

been extensively studied because of the development of
microfabrication technology. Their electron-lattice cou-

pling is weaker than in organic semiconductors. Thus,
many electrons can be doped heavily into the conduction
band by modulation doping, resulting in a 1D metallic
material with a Fermi sea. Phonon effects and the lattice
distortion can be neglected in the first approximation.
Therefore, a heavily doped quantum wire is a good exam-

ple of a 1D degenerate electron system for studying in-

trinsic many-body effects in geometrically restricted sys-

tems.
One of the most striking phenomena due to the Fermi-

surface effect is the power-law anomaly in optical spectra
near the Fermi edge, i.e., the Fermi-edge singularity
(FES) [I]. The optical absorption (emission) spectrum
l(to) in the vicinity of the absorption (emission) edge Ep
behaves as l(to) —tto —Eat ~. In experiments, the FES in

a doped semiconductor wire was observed by Calleja et
al. [2], who stressed that the FES peaks (for P & 0) in 1D
are sharper than in higher dimensions.

So far, theoretical studies of the FES have been limited

to the case of a localized hole (an infinite hole mass) in

bulk simple metals [1]. Only for this case does the FES
take place and an analytical expression of P was given;

t

the FES disappears when the effective mass of the hole is

P = ge(p)apt~p +g [top s,, (p)]dpi'&p—
p, (x

finite [3] in bulk or quantum-well semiconductors [4].
Thus the FES has been thought to depend sensitively on

the hole dynamics. Hence two questions arise: Why can
the FES peaks be observed clearly in 1D semiconductors
[2]? How do the hole recoil and the electronic correla-
tions affect the FES in 1D? The main purpose of this
Letter is to give an analytical expression for the critical
exponent P in ID systems for an arbitrary hole mass tak-
ing into account electronic correlations The . hole-
localization problem is first discussed by taking account
of the infrared divergence of the Fermi sea. Next physi-
cal mechanisms for yielding the FES in 1D are clarified

by investigating the exponent.
We shall consider an n-type heavily doped quantum

wire with a direct gap (gap energy Eo) When .the
motion perpendicular to a 1D axis (hereafter denoted the
x axis) is confined within a radius of R, we have quan-
tized ID bands with separation of order h (tr/R) /2m
where m* is the effective mass of conduction electrons.
When this separation is greater than the Fermi energy
Ep =h kp/2m, only the lowest subband is occupied and

the system can be regarded as 1D. This condition is ex-
pressed by kpR & tr, i.e., n~D & 2/R, where n~o is the 1D
density of the doped electrons. For R =10 nm, n]D
& 2.0& 10 cm

In this case, the system is described by the following
1D Hamiltonian:

1+ g g [V'(q )ap+q ~p q& ap ~ ap~ V"'(—q)dp+q Qp~—p' qz'ap' z'], —
2L p,p', q cr, cr'

where L is the system size, coo is the energy offset of the
valence band [too=Ep+EG+s, , (0)], and apt and ap
(d„t and d„)are creation and annihilation operators of
the conduction electron (valence hole) with momentum p
and spin cr, whose dispersion is given by e(p) k,.(p)].
When the doping density is high enough (large Ep
=kttTp), the Fermi points ~ kp become well defined at
low temperature (T && Tp) so we may linearize the
conduction-band dispersion near these points as s(p)
=e, (p)=—~vp(p T-kp), where vp is the Fermi velocity

t of the conduction electrons and j=1 (j =2) corresponds
to the right (left) branch of the conduction band [5].
Since we are interested in P near the Fermi edge, this

linearization procedure is a good approximation of the
band structure.

The scattering strength within the conduction band is

represented by g"=2 V"/tt, while the simultaneous scatter-
ing between a conduction electron and a valence hole is

represented by g"'=2V"'/tr. These interaction matrix
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elements are assumed to be spin independent. In the low-

temperature limit, the interactions between two conduc-
tion electrons in 1D are further classified in terms of the
momentum transfer q according to the standard defi-
nition in g-ology [5]: (i) the forward scattering (q =0),
g2 (g4), as an intrabranch scattering of electrons in the
different (same) branches and (ii) the backward scatter-
ing (Iql = 2kF), g~, as an interbranch scattering from
right to left and from left to right branches. Note that

Igil « lg21 and Ig&l « Ig41 because of the Iql depen-
dence of the Coulomb interaction as well as the enhance-
ment of the dielectric function near q + 2kF due to the

resonant scattering between the Fermi points. Hence we

study the forward-scattering model, which can be solved

exactly. The backward-scattering effects due to gt' will

be discussed only qualitatively. The umklapp scattering
can be neglected in doped semiconductor wires. One of
the forward scatterings, g4, contributes only to the
Fermi-velocity correction. In the following, therefore, vF

means the Fermi velocity including this correction.
Here we employ the bosonization method [6] to de-

scribe the collective excitations of the 1D degenerate elec-
trons [7]. Long-wavelength charge- and spin-density
fluctuations are described as Tomonaga-Luttinger (TL)
bosons, and Eq. (1) is transformed into

TL Z ~'TL Ip I attaF +Z ~'F lp lcF cF+Z [too e—(p )]dF&F
p p p, cK

I/2 '
~

' I/4

g gd„t&„~'F'"VIpl(a+at (2)
2 L pF+g2 p ne

where n is the site index, a is the lattice constant, and aF and aFt (cF and cFt) are operators of the charge (spin) of the TL
boson whose velocity is vTL—= [vF —(g2) l ' (vF). We then employ Tomonaga's intermediate-coupling theory and intro-

duce the following unitary transform:

U exp

graf

d + '(e' '"a„—e 'F'"aFt) (3)
p If0'

(4)

(7)

e ldgyT
PFgC(r ) „dxg ex p[i r e, (p)e ] ' exp[, ix (kF p) + tt + (x, r )]—1 —ixa ~

p a

In the case of a single valence hole, the variational parameter f~ obeys the equation
~ I2 ~

c '14
l.'F g2f„—— e 'F t dipl [vTLp —2te (1 —cosap)]

2 L vF+g2

where S is defined as S—=g„lf„l(1 —cosap), t is the transfer integral of the valence hole [i.e., e,, (p) 2tcosap], and a
is the cutoff of order a-a.

Our first question is whether the valence hole is localized due to the infrared catastrophe of the Fermi sea. The sys-
tem with a hole interacting with the degenerate Fermi sea is analogous to a polaron system, provided that the low-

energy excitation is described as a TL boson. Using this analogy we evaluate the effective transfer integral t = te of-
the hole, where S is given by a solution of the integral equation

cv 2 c
S (g2 ) VF g2

dp
p(1 —cosap)e (5)

4 vF+g2 "o [vTLp —2te (I —cosap)]

Near p=O the integrand becomes p/2vTL=O without any divergence. Thus S is ftnite and the hole in ID is not local-
ized even when the low-energy excitations of the 1D Fermi sea are taken into account. This is in contrast to a particle
coupled with a dissipative environment, where the factor (1 —cosap) in the numerator of the integrand is missing [8].
The mass renormalization of the hole will be examined in detail elsewhere. Anyway, we need to examine the FES for a
ftnite hole mass.

Now we shall turn to the FES for an arbitrary t at zero temperature (T 0). The optical spectrum I(to) is given by
the Fourier transform of the correlation function, that is,

I(to) 2IMI Re dr e' 'C(r), (6)

C(r)= Z (Ole' "'d
t, ~t,~ ' —"'aud —a', IO&

k, k', cr

where M is the interband matrix element (assumed to be constant), r is a real time, and I0& is the Fermi vacuum at
T =0. Using the standard boson algebra and Eq. (3), C(r ) is evaluated in the continuum approximation at T =0 as

~ —i/2

X+VFg
+exp[ —ix(kF+p)+h (x, r)] 1+i- I /2

(8)
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ikx —ski'rtr] + 2[1

where e,, (p)e is the renormalized dispersion of the valence band, and top and h~ (x, r ) are given respectively by
r i ]/2

2 c'F g2 2 ct'top top+ g (v TLhk
—zg2'hk ),

C'F+g2 k &0
—ck

/), ~(x, r) = ——g '
[ck'[I —e

L p)p k

(9a)

(9b)

with ck =cosh' hk—e /x and sk =—sinhA, —hke /x.
Here A,

—= 4 In[(tF+g2)/(tF —g2)] and hk= 2 /rgb'[vTL
—2t*(l —cosak)/Ikl] '. In the following we investi-
gate the exponent P of the FES determined by the asymp-
totic form of C(r) —r ~ ' for r &&h/EF.

In the case of a localized hole (t* =O, e,, (p)e =0),
the p integral in Eq. (8) gives b(x), which means that the
optical transition occurs locally. Then the x integral be-
comes trivial and C(r) for large r is evaluated as
C(r) —r exp( —iEFEsr), where EFEs is the Fer-
mi-edge energy in the t =0 case: EFEs= top —(g2 ) /
[4a(tF+g2)]. The FES exponent for a localized hole
consists of two parts, Pp-P, „+P,where

Pe 2 + 2 (t'F g2 ) [t'F (g2)

p
& (gcc)2(, gc) —I/2(, +gc)

—3/2

(loa)

In the case of a finite hole mass (t* & 0), it has been
expected that the recoil of the hole will smear the FES
[3,4]. In I D systems, however, the low-energy excitations
have momentum only near 0 or 2kF, which causes the
sharp FES peaks observed even in the t* &0 case [2].
The numerical calculation of the finite-size Hubbard
model also supports this property [21. Here we shall
analytically confirm this feature and also show that the
exponent remains the same as in the case of a localized
hole.

In Eq. (8) we linearize the dispersion of the valence
hole as s,, (p)e = TtF'(p T-kF) near p= ~kF. Then
integrating over the momentum p —kF or p+kF gives
b(x+vF'r ) and b(x —vF'r ) for the first and second terms
in the curly brackets of Eq. (8), in contrast to the local-
ized case where b(x) appears. Therefore the exponent P
remains the same as that for the localized hole. Howev-
er, the analyticity of h ~ (x, r ) in the complex r plane de-
pends on the sign of cF' —c TL, which appears in the ex-
ponents in Eq. (9b). (i) When t F' & t TL, I(to) =0 for
to & EFEs, while l(ro)-(to —EFEs) for ro & EFEs. Here
F. pEs is the energy of the absorption edge: E p Es

—=~0
—e,, (kF)e . (ii) When tF' & t TL, on the other hand,
l(to) —Ito EFEsl for both to & EFEs and to & EFEs In.
this case, an "indirect" transition takes place at co

-EFEs —(tF' —vTL)kF from the top of the valence band

(p =0) to the Fermi point in the conduction band
(p = ~ kF), together with an excitation of a TL boson
(with momentum kF) in the conduction band. Then the
FES at co=EpEg will be observed in a continuum spec-
trum. Physically cF & c TL is the usual case in the n-type
doped semiconductors. For p-type doped semiconductors,
however, the above discussion can be directly applied by

gCV
rge

0—

convergent edge

FIG. I. The phase diagram in the plane of g2= g'2/iF and-
g2'= gI'/vF, showing the boun—dary between the divergent edge
(P &0) and the convergent one (P & 0).

exchanging the electron and the hole to get c F' & vTL.
Now let us examine the exponent. The critical ex-

ponent P is composed of two parts: (i) the many bod-y
excitonic correlation part P,„dueto the Coulomb scatter-
ing among (N+ I ) electrons and a valence hole, and (ii)
the orthogonality catastrophe part P resulting from the
infrared divergence of the Fermi sea [9]. Here we note
that P~ is also the exponent of the valence-hole Green
function, i.e., Gh, i,(r)—= ig(r—)(d (r)d (0))-r "for
large r Th. e phase diagram in the (g2,g2') plane [10] is
shown in Fig. l, which shows the boundary between the
divergent edge (P &0) and the convergent one (P &0).
We find that electron-hole attraction (g2'&0) is neces-
sary to obtain the divergent edge.

The dependence of the exponent on gq' is sho~n in Fig.
2(a). The exciton part p, x is linear in g2' and changes its
sign roughly according to the sign of g2'. For g2'&0,
p,„&0,while p,„&0 for g2' &0. On the other hand, p~
is always posi ti c e for arbitrary g2'. In usual cases
(g2'&0), therefore, p, „

leads to the divergent edge but

P tends to make the edge convergent. Thus these two
mechanisms compete against each other.

The electronic interaction g2 also aAects the exponent
[11], as shown in Fig. 2(b). In particular, P is asym-
metric with respect to g2=0, which means that the total
exponent P depends on whether the electronic correlation
is repulsive (g2 & 0) or attractive (g2 & 0). For the
rePulsive case [0 & g2 &0.83929vF], Poc is smaller than
that for g2 =0 and p is minimum (but positive) when
g2= 2 cF. In other words, weak repulsive interaction
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trophe of the Fermi sea does not lead to the localization
of a valence hole in ID. The critical exponent P of the
Fermi-edge singularity has been obtained analytically,
taking into account the motion of the hole as well as of
the electronic interactions in the conduction band. The P
is completely independent of the hole mass in ID, which

is in sharp contrast to the 2D and 3D cases. Weak repul-
sive interaction among the conduction electrons is favor-
able to the power-law divergence of the edge spectrum,
but strong repulsion makes it convergent. Although our
model does not include all the actual details, e.g., lattice
distortions, hole lifetime, an exciton bound state, and
finite temperature effects, we believe that these new

findings hold universally in 1D systems and are of
significance in the interpretation of experimental results
[2].

The authors thank Professor Kazuo Ohtaka and Dr.
Susumu Kurihara for fruitful discussions on the x-ray
edge problems.
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among the conduction electrons weakens the orthogonali-
ty of the ID Fermi sea, and consequently makes the FES
peak sharper. However, the edge spectrum becomes con-
vergent in the case of strong repulsive correlation, rough-
ly gC )

[gC2C (2, C2C )] 1/2

Finally we mention the backward scattering between
an electron and a hole. Using an analogy to the strong
pinning due to an impurity, it is preliminarily found that
this backward scattering is irrelevant when g2 &0. For
gq &0, a mass gap h, e is introduced in the excitation
spectrum of the Fermi sea, resulting in a cutoff of the
FES at (tu —EFEs(-he. This problem should be con-
sidered using nonperturbative ways. A detailed study on
the g~' effects will be reported elsewhere.

In summary, we have shown that the infrared catas-

C
g2

FIG. 2. Total exponent p is plotted by the thick solid curve
as a function of (a) the electron-hole interaction gg'=gF/t F for

g[ 0.3vF and (b) the electronic correlation g2= g$/vF f—or
gp' 0.5vF. Two components, p,„and p, are also plotted by
thin solid and broken curves, respectively.
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