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Spectral Density Singularities, Level Statistics, and Localization in a
Sparse Random Matrix Ensemble
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We study the eigensolution statistics of large N x N real and symmetric sparse random matrices as a
function of the average number p of nonzero matrix elements per row. In the very sparse matrix limit
(small p) the averaged density of states deviates from the Wigner semicircle law with the appearance of
a singularity (p(E)) ct:1/iEi as E 0. A localization threshold is identified at pv=1.4 via a simple cri-
terion based on the density fluctuations, and the nearest-level-spacing function P(S) is shown to obey
the Wigner surmise law in the delocalized phase (p) pq). Our findings are in agreement with previous
supersymmetric and replica theories and studies of the Anderson transition in dilute Bethe lattices.

PACS numbers: 72. 15.Rn, 02.50.+s, 71.20.—b

Many problems of both classical and quantum physics
have discrete representations in terms of N xN random
matrices. From the complete eigensolutions for every
member of a corresponding random matrix ensemble,
averages and fluctuations of interesting physical quanti-
ties can be computed. The continuum limit must be
recovered when the order N of the matrix is large. The
first kind of matrices, where randomness plays an impor-
tant role, was introduced a long time ago in the context of
nuclear physics by Wigner and Dyson [1-4]. In the case
of real and symmetric matrices the exactly solvable
Gaussian orthogonal ensemble (GOE) [3] is defined,
where the averaged density of states (DOS) (p(E)) obeys
a simple semicircle law [4]. The corresponding eigensolu-
tion fluctuations can be studied via the nearest-level-
spacing distribution function P(S), which is known to fol-
low the Wigner surmise [4], a universal form which de-
pends only on symmetry and implies strongly correlated
eigenvalues repelling their closest neighbors.

The present work is motivated by the fundamental
problem of electronic structure in disordered lattices in

connection with Anderson localization [5], where the ma-
trix representation is known as the tight-binding random
matrix ensemble (TBRME) [6]. In the absence of spin
effects the TBRME consists of real and symmetric sparse
random matrices being drastically different from the
GOE. Only in the mean-field limit of d =~, when each
site is allowed to extend its hopping range to all other
sites, do the N xN matrices become full corresponding to
the GOE. A sparse random matrix ensemble (SRME)
can be also obtained by diluting the GOE matrices and is
common in a variety of problems ranging from dilute spin
systems [7] to combinatorial optimization [8]. Such a
SRME [9-11]is characterized by a finite mean number p
of randomly placed nonzero elements per matrix row and
allows one to consider the limits of validity of the Wig-
ner-Dyson theories and their universal statistics, when the
matrices deviate strongly from the GOE. It can be used
as a model for studying the quantum-mechanical behav-
ior of systems that are classically chaotic [12], and also
fluctuation properties of disordered conductors [13].
More important is the fact that the SRME permits the
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The normalization condition (TrH ) =N sets the energy
scale and guarantees that the DOS has a compact struc-
ture in the region [—2,2], when p=N. For p (N the
majority of eigenvalues still lie in [—2, 2] but exponential
tails develop outside this region. When p=N the GOE
limit is obtained and small-p values should simulate more
realistic dilute-lattice situations. Extensions of the model
are obtained if we vary the ratio between the positive and
negative matrix elements, or introduce a continuous,
rather than binary, distribution. No qualitative changes
in the results reported here were found for such extended
SRMEs.

Since the known remarkable analytical solutions for
the SRME [9-11] are, nevertheless, limited in their ex-
tent we chose to study the problem numerically. The
method of calculation relies on the numerical computa-
tion of eigenvalues and eigenvectors in finite samples
from the SRME. Our results are based on allowing the
matrix size N to vary, for a given p, in order to determine
the large-N behavior. The matrix ensemble we used con-
sists of matrices of sizes up to 2000x2000. We are aim-
ing, on one hand, for the independent confirmation of the

. (2)

appearance of a delocalization-localization Anderson
transition for a critical value of p =pq. Finally, an extra
reason for considering this model is that it is amenable, to
some extent, to various analytical treatments using the
replica and supersymmetric methods [9-11],unlike the
original TBRME on two- and three-dimensional lattices.

We consider real and symmetric N xN matrices

N

H- Q H;,, ii&&j I ~ (1)
i,j I

written in a convenient orthogonalized basis set (ii),
i =1,2, . . . , N). The matrix eletnents H; i ( =H; i

Hl, ;) are independent identically distributed random
variables chosen from the probability distribution
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previous analytical results, and since our approach does
not suffer from the same sorts of limitations, we can
answer an even more general set of questions.

We first focus, in Fig. 1, on the averaged DOS and par-
ticularly demonstrate the appearance of the (p(E)) ~1/
~E( singularity as ~E~ 0 in the very sparse matrix limit

p &&N. By significantly lowering p we observe two
characteristic features of the corresponding DOS: First,
for special energies whose number progressively increases,
b-function peaks are seen. They are special degenerate
states due to the dilute structure of the matrices and they
were explained in [14] for quantum percolation models.
The second and more important observation refers to the
continuous component of the spectrum close to the center.
For small-p values a singularity of the form of Dyson's
equation [15],

&p(E)) ee I/JEST/In([EJ)/, as JEST 0,
appears. Since the E values for the diverging (p(E)) are
very close to zero and the DOS is not visible due to the
coarse-graining procedure involved we choose to plot the
averaged integrated density of states (IDOS) against E
by including a range of very small energies. In the dou-
ble logarithmic plot of Fig. 2 the law of Eq. (3) implies
that for small-p values the data should be straight lines.
Despite the various sources of error the data lie rather ac-
curately on straight lines and the peak of the form
(p(E)) tx: I/~E~ is clearly displayed. From the results of
[9-11]a power of 2 instead of 3 is expected for the loga-
rithmic part of the singularity. This deviation is of no
significance and, if not genuine, could also be understood
as arising from numerical difficulties in our approach due
to the very small energy values considered. Such 1/E
singular structure for the DOS was previously shown [16]
in disordered lattices with the randomness in the off'-

diagonal matrix elements further related to log-normal
distributions, 1/f noise phenomena, and localization. At
values of p close to p, we see a dip on the DOS near the
band center, as in [14].

Next, we turn to the DOS fluctuations which are es-
timated from the variance, ([b'n(E)l & ([n(E)] )
—(n(E)), of the number of eigenvalues n(E) in an ener-

gy bin of width E. From ordinary Poisson statistics the
variance should be proportional to the mean (n(E)).
However, this result refers only to localized states. As a
consequence of the validity of the Wigner-Dyson statis-
tics [1-4] ([bn(E)] ) is much lower for delocalized states
and varies only logarithmically with (n(E)) [17]. There-
fore, the relative variance ([bn(E)] )/(n(E)) must be
of order 1 when the states in the energy bin are local-
ized and much smaller than 1, decreasing with (n(E)),
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FIG. 1. Plot of the normalized averaged DOS &p(E)1 togeth-
er with the Wigner semicircle law for sparse random matrices
of N 2000 with three different values of p: (a) p=8 from 200
matrices, (h) p 5 from l00 matrices, and (c) p=3 for l00
matrices.
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F16. 2. Plot of the averaged integrated density of states
N(E) for E close to E 0 for, curve a, p 5 and, curve b, p=3.
The straight lines imply that the singularity is of the form of
Eq. (3).
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when they are delocalized. In fact, for critical states
([bn(E)] ) is still proportional to (n(E)) but with a pro-
portionality index of about —,

' [l7], a bound used as a lo-
calization criterion.

In order to estimate p~ we measured the sample-to-
sample relative DOS fluctuations for various fixed small-

p values. Our results will be presented in full elsewhere
but here we report that they indicate a quantum percola-
tion threshold of p~=1.4, found as the concentration
where the relative fluctuations were about 2 . From the
correspondence of the SRME to the infinitely coordinated
diluted Bethe pseudolattice the transitions of classical
percolation at p, 1 and quantum percolation at p~=1.4p, are expected [18],in agreement with our result.

We have also studied the distribution function P(S) of
the nearest-energy-level spacings S„E„+]—E„, using a
quite rigorous analogy which relates Wigner-Dyson
statistics with delocalized states and ordinary Poisson
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FlG. 3. (a) The calculated level-spacing distribution func-
tion for N 1000 and p 3&p~. The data are in histogram
form for 200 random matrices and cover the full energy range.
The horizontal axis is in units of the local mean-level spacing
and the solid curve is the Wigner surmise P(S) =(xS/2)
&exp( —mS2/4), which implies the occurrence of a smooth,
correlated spectrum exhibiting level repulsion associated with
delocalized states. (b) As in (a) but for p =1.4=pv. The con-
tinuous lines are the Wigner surmise and the Poisson laws, re-
spectively. (c) As in (a) but for p=l &pv. The continuous
line is the usual Poisson law P(S) =exp( —S) and the spectra
are uncorrelated, obeying normal statistics corresponding to lo-
calized states.
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statistics with localization, previously exploited for re-
sponsibility of the mesoscopic-physics fluctuation phe-
nomena [13]. The calculations are done for various p
values by obtaining the eigenvalues for many random
runs, their total number being approximately 50000, and
subsequently by deconvoluting the spectrum [6,19], in or-
der to retain a constant DOS. This is equivalent to
studying the distribution of the diA'erences

(A(E„+)))—(Ã(E.))=(E,~) —E, ) (Ã(E)),

where (JV(E)) is the averaged IDOS at energy E. In

Figs. 3(a)-3(c) the results for P(S) are displayed and
are shown to agree well with the corresponding Wigner
surmise and the Poisson law for p above and below p~, re-
spectively. For p=p~ instead we obtain an intermediate
distribution. From these results we conclude that the
Wigner-Dyson universality is perfectly valid even for
large deviations from the GOE limit, if p )p~.

We summarize the main results for the SRME ob-
tained in this Letter: (i) The DOS perfectly satisfies the
semicircle law down to moderate values of p, and a cross-
over to a DOS with a presence of a I/E singularity peak
for ~E ~

near zero is seen by significantly lowering p. (ii)
The validity of the GOE universality is demonstrated by
the occurrence of the Wigner surmise even when drasti-
cally departing from the GOE, in the very sparse random
matrix limit, as long as p )pv. For p (p~ the P(S) ap-
proaches a Poissonian distribution. At the critical point
we obtain an intermediate distribution interpolating
smoothly between the two. Therefore, our results for
P(S) signify the wider validity of the Wigner-Dyson
theory and also enable us to distinguish between localized
and delocalized states. Moreover, they might be useful in

giving justification for the presence of the correlated spec-
tra needed to explain relaxation data in glasses [20] and

in connection with the possibility of constructing a
mean-field theory of Anderson localization.
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