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A new method is introduced to calculate response functions within density-functional theory. It uses a
conjugate-gradient algorithm applied to a variational expression from perturbation theory. The dielec-
tric tensor, effective charges, and TO and LO phonons at q 0 in a-quartz are obtained. A one-
parameter scissors operator gives the dielectric tensor within 0.5% of the experimental value. The an-

isotropy of the effective charge tensor is shown to be crucial for reproducing the LO-TO splittings.

PACS numbers: 7l. l0.+x, 63.20.Dj, 71.20.Ad

Crystalline and vitreous silica (SiOp) are systems of
technological as well as fundamental interest, for which
accurate experimental data and theoretical models are
desirable. Recently there has been a flurry of activity in

improving the parametrization of interatomic model po-
tentials to describe silicas and other oxides, which is a
problem with a long history [1]. There have also been
numerous applications of powerful ab initio methods to
study the structures and properties of a-quartz and other
polymorphs [2-4]. Bonding topology and forces are inti-
mately related to phonon frequencies and normal modes,
so that high-quality theoretical calculations of phonons
can strongly constrain the search for interatomic model
potentials. In addition, a detailed understanding of the
optical response of silica serves technological needs, for
example, in the fabrication of optical waveguides.

In the present paper we propose a new technique for
studying response functions in solids and use it to study
the dielectric tensor, Born effective charges, and phonons
in a-quartz, the simplest tetrahedrally bonded silica.

The use of density-functional theory (DFT) imple-

mented within the local density approximation (LDA) [5]
is well established as an eff'ective tool in studying the elec-
tronic structure and total energy of solids with no param-
etrization to experimental data [6]. Recent advances in

linear response theory by Baroni, Giannozzi, and Testa
(BGT) [7] permit calculation of response functions in

solids by use of the same reliable theory, without some of
the drawbacks of previous methods [g] (i.e., no use of su-

percells). The BGT method has been used widely in cal-
culations of linear-response functions, including phonon
frequencies, elastic, dielectric, and piezoelectric con-
stants, and optical response in various materials; also
thermal expansion of Si [9-12]. A general formalism for
nonlinear responses has been derived using the "2n+1"
theorem of perturbation theory [13].

Our method improves on the BGT method by using a
variational expression for the coeScients of these re-
sponse functions, and also by replacing the traditional di-
agonalization procedure performed within a self-
consistent density loop by a conjugate-gradient algorithm
[14] where the diagonalization and self-consistency steps
are done simultaneously [15]. This new method is espe-
cially attractive to use when there are more than four
atoms in the unit cell of the unperturbed system: Imple-
mented with fast Fourier transforms and separable pseu-
dopotentials [2,16], the scaling of the computational
effort is no worse than Nb,.„&Np„lnNp„orNb,.„&Np„for a
large unit cell, where Nb„.„gis the number of occupied
bands in the problem, and N0„ is the number of plane
waves in the basis.

The very existence of a formulation of the DFT total
energy that is variational with respect to wave functions
is important in the current practice of ab initio calcula-
tions [6]. In the present Letter we introduce the follow-
ing expression for the second-order perturbation of the
DFT total energy, which is variational with respect to
f(rst-order perturbalions of the wave functions [17]. We
follow the notation of Ref. [13]:

E(2)[ (0).+(I)] g [(+(0)(,(l) [+(l))+(+(I)[,(I)(+(0))+(+(l)((0(0) (o))
~

(i))]
N, occupied

'E
n(r) n(r')

where

ENonvar Z (tir I t'ex& I lir
a,occupied

(2)

is a functional of the ground-state wave functions 1(r, only, and Ep,. ~z is the second-order perturbation of the Ewald
energy part of the total energy. E( ) is variational with respect to [y ' ], with the constraint that
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(3)

for all a and P labeling occupied states. The first-order
density n ' (r) is given by

n"'(r) = g y."'*(r)y"'(r)+(c.c.) . (4)
a,occupied

In Eqs. (1)-(4) the ground-state wave functions y, are
fixed, having been computed in a separate unperturbed
ground-state calculation.

The computational effort to minimize Et is similar to
the effort needed to minimize the ground-state total ener-

gy in the conjugate-gradient method [14] and is often
even less. Specializing Eqs. (1)-(4) to a phonon pertur-
bation with wave vector q, in which atom r is moved in

direction i, or an electric field perturbation along direc-
tion j, is done by analogy with the procedure presented in

Refs. [9,13]. Once the first-order wave functions y, ' for
all phonon polarizations i at a given q or all electric field
directions j have been obtained, the matrix elements of
the dynamical matrix D;„,.;...(q), the Born effective
charge tensor Z,*;~, and the electronic dielectric tensor

s,~' ' (sometimes called s ' ') are easily computed. A
more complete description of the method, a generaliza-
tion of the variational properties to higher order, and a
discussion of the relationship with the 2n+1 theorem of
perturbation theory [13] will be presented elsewhere [18].

In our a-quartz calculations, the atomic potentials plus
core electrons are replaced by extended norm-conserving
separable ab initio pseudopotentials [19]. We use a
rational polynomial parametrization [20] of the ex-
change-correlation functional, which is based on the
Ceperley-Alder [21] electron-gas data. In what follows

we will present results obtained with one special k point
at k ( 3,0, 4 ) and a kinetic energy cutoff of 30 hartrees
(about 5600 plane waves). Plane waves up to a kinetic

energy cutoff of 22.5, 25, 27.5, and 30 hartrees, as well as
Brillouin zone integration on special point grids of 1, 2,
and 6 special k points [22], have been studied in order to
estimate convergence errors.

The unit cell of a-quartz has nine atoms with space-

group trigonal P3z2l [23]. For every given k-point set

and kinetic energy cutoA' we have determined the equilib-

rium geometry by minimizing the LDA ground-state to-

tal energy; then we have studied phonon and electric field

perturbations. For one special k point and 30 hartrees,
the lattice constants are found to be a =9.099 bohrs and

e 10.057 bohrs [basis set convergence (BSC) and Bril-

louin zone integration (BZI) error less than 0.1% and

0.5/o, respectively], and the internal atomic coordinates
are Si, u 0.4614 and 0, x=0.4098, y=0.2815, and

z 0.1081 (BSC and BZI errors in absolute numbers less

than 0.0004 and 0.003, respectively). Experimental
values are [24] a 9.290, e = I0.215, u =0.4697,
x 0.4135, y 0.2669, and z =0.1191.

Using the predicted geometry, we have computed the
electronic contribution to the dielectric tensor. Along the
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TABLE I. Theoretical Born effective charge tensor Z,*,;j.
The coordinates of the atoms are Si(u, 0,0) and 0(x,y, z) where
u, x,y, z can be found in the text.

Electric field direction

Displacement along

Displacement along

Silicon atom

3.016
0.0
0.0

Oxygen atom

—1.326
0.480
0.298

0.0
3.633

—0.324

0.429
—1.999
—0.679

0.0
0.282
3.453

0.222
—0.718
—l.726

trigonal axis we find c,i' '=2.566 while perpendicular the
value is 2.527 (BSC and BZI errors less than 0.2/0 and

respectively). The corresponding experimental
values are 2.383 and 2.356 [25]. The theoretical overes-
timation due to LDA is well known, and can be corrected
semiempirically by including a single-parameter "scissors
operator" [10]. Inclusion of a scissors shift 6=1.8 eV,
corresponding to the LDA gap underestimate in a-quartz
[4], leads to the very satisfactory values 2.385 and 2.353.
Note that with or without a scissors correction, the slight
anisotropy in the dielectric tensor is well described. The
above theoretical results all include local field corrections.
Without local field corrections (and without the scissors
correction) the parallel and perpendicular dielectric con-
stants are 2.689 and 2.668, respectively, so local fields
contribute about a 5% eff'ect.

The predicted Born effective charge tensor for the 0
atom at position (x,y, z) and the Si atom at position
(u, 0,0) is presented in Table I (BSC and BZI errors less
than 0.01 and 0.02, respectively, for the value of any
component of Z,*;~). The effective charge tensors for
every other atom can be obtained using the symmetry
operations of the crystal. If a-quartz were purely ionic,
with a fixed number of electrons following the nuclei as
they move, we would obtain symmetric, diagona1, isotro-
pic tensors equal to the ionic charge. This is clearly not
the case for a-quartz. The importance of this nonionic
behavior will be analyzed at the end of this paper.

Although this method can easily (without supercells)
give the dynamical matrix at any phonon wave vector q,
we will restrict ourselves to q =0 (the I point) [26]. The
phonon frequencies at I present nonanalytic behavior due
to the long-range Coulomb field. The limiting values for

q 0 along the trigonal axis and q 0 parallel to it can
be different. The modes at I occur in three symmetry
representations: A~, A2, and E. Depending on the direc-
tion as q 0, the A2 and F. modes occur as longitudina1
modes AzL and EL or transverse modes Azr and ET [27].
Table II shows our results (BSC and BZI error less than
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TABLE II. Phonon frequencies of a-quartz at 0 K at I

(cm ').

Theory

238.9
339.3
461.7

1061.2

A 1 modes

Experiment'

219
358
469

1082

TO

341.4
493.4
762.4

1056.5

LO

365.7
540.5
784.7

1218.3

A2 modes

TO

361.3
499
778

1072

LO

385
553
791

1230

0.5% and 1.5%, respectively, except the first Ai mode
[28)), and compares with experimental results at 0 K
[25,29]. 23 of the 28 mode frequencies are within 3% of
the experimental values, with a slight overall tendency to
underestimation. Notable exceptions are the first Ai
mode which is overestimated by 9%, and the lowest Aq7-

and A2L modes and the second lowest Ai that are un-

derestimated by about 6%. Nevertheless, the theoretical
and experimental ordering of the levels is exactly the
same.

Next we consider the role of ionic motion in the
response of a-quartz to an electric field. The low-fre-
quency dielectric tensor components are computed to be
4.979 along the trigonal axis and 4.776 perpendicular to
it, to be compared with the experimental values of 4.64
and 4.43, respectively [25]. Including the scissors
correction for the electronic dielectric tensor, without
changing the LO and TO phonon frequencies, and using
the generalized Lyddane-Sachs-Teller relation [25] leads

to 4.628 and 4.448, respectively. Agreement with experi-
ment is thus better than 0.5% for both the low- and high-
frequency dielectric tensors. Note that the value of the
one-parameter scissors correction was not adjusted to
bring about agreement in the dielectric tensors; it is ob-

Z* -Z*S +Z*'+Z*' (5)

dexes atoms in the unit cell, i represents the Cartesian
direction of an electric field, and j represents the direc-
tion of atomic displacement. The antisymmetric contri-
bution is seen to be large for the Si atoms, while the
traceless symmetric part is large for the 0 atom. From
Table II we have extracted the values of the LQ-TO
splittings shown in Table III (BSC and BZI error for
LO-TO splittings are less than 3% and 10%, respectively,
except for the lowest E mode [30]). There is good agree-
ment between the experimental and theoretical values for
the LO-TO splittings using the full Z, ,~. When we

suppress the antisymmetric part, the agreement is seen to
be slightly worse. When the full tensor is replaced by the
symmetric, isotropic part Z,*B',~, with Z* —1.684 for
0 and 3.368 for Si, this agreement with experiment is
now completely destroyed: some LO-TO splittings are
much too large; some are much too small. Even if we try
to adjust the value of the isotropic charge, the LO-TO
splittings cannot be matched. As mentioned above, this
effect is a direct consequence of the nonionicity of the

TABLE III. LO-TO splittings at I in a-quartz (cm '). (a)
Experimental data extrapolated to 0 K, (b) theoretical results

using the full effective charge tensor, (c) the same as (b) using

only the symmetric part of the effective charge tensor, and (d)
the same as (b) using only the trace of the effective charge ten-

sor.

(a)
Experiment

(b)
Full Z

(c)
Symmetric Z*

(d)
Trace-only Z*

tained from an independent source by adjusting the LDA
band gap to the optical gap [4].

Let us now analyze in more detail the LO-TO split-
tings. These splittings are due to the coupling of the
atomic displacement with the long-range electric field by
means of the Born eAective charge tensor. This tensor
Z,*;J may be decomposed into three contributions: (l) a
symmetric, isotropic tensor (the trace) Z,*b;i , (2.) the
remaining symmetric traceless part Z,*~J, and (3) the an-
tisymmetric part Z,*,i, where

133.3
261.3
377.6
443.8
690.8
791 ~ 7

1045.0
1128.1

133.4
263.2
389.2
498.6
694.5
803.9

1209.5
1123.9

E modes

133
269
393.5
452.5
698
799

1066
1158

133
269
402
512
701
811.5

1227
1155

'These data were extrapolated from the temperature-dependent
experimental values provided by Ref. [25I (for the six highest E
modes and the Az modes) and by Ref. [29] (two lowest E
modes and the A i modes) using a ro(T) =ryo+aT' law as ad-
vocated in the latter paper.

24
54
13

158

8.5
60

3
12.5

161
3

24.3
47. 1

22.5
161.9

0.15
1.9

1 1.7
54.8

3.7
12.2

164.5
—4.2

A2 modes
26.3
38.9
29.4

149.4

E modes
0.25
2.2

10.9
51.8

5.6
13.3

165.7
—5.9

44.5
82.3
45.9
97.6

0.69
4.5

14.3
104.5

8.0
26.4

115.0
—11.9
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binding in the a-quartz crystal. No simple charged ball
(isotropic rigid ion) type model interatomic potential [I]
will be able to reproduce accurately the LO-TO split-
tings, and, in consequence, the entire phonon spectrum of
a-quartz, without large, unphysical modification of the
short-range interatomic forces.

To summarize, the present method provides an efficient

way to compute the dielectric tensor, effective charges,
and full dynamical matrix at any wave vector q for an ar-
bitrary unit cell, within LDA, for any material. Without
any a priori model of interatomic forces, we have been
able to predict the properties in a-quartz by ab initio
means, and have obtained excellent agreement with ex-
periment. The use of a one-parameter scissors correction
yields dielectric tensors within 0.5% of experimental
values. The significant role of Born effective charge ten-
sor anisotropy in giving the correct LO-TO splitting has
been emphasized.

Finally, note that the ability to compute the dynamical
matrix at arbitrary q permits conducting a Brillouin zone

summation to get force constants in real space [31], and

opens the way to ab initio calculation of thermodynami-
cal properties [[2].
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