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Structure-Factor Scaling at the Isotropic-to-Nematic Transition of Cesium Perfluoro-Octanoate
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The structure factor of the lyotropic liquid-crystal cesium perfluoro-octanoate-water after the materi-
al has been quenched from the isotropic phase to the nematic phase was found to display non-Porod
power-law behavior in the limit of large wave vectors. Our measurements were consistent with the scal-
ing law S(q, t)—t ~

q for bulk samples and S(q, t)-t q for thin samples exhibiting two-

dimensional behavior. Dimensional crossover was also observed.

PACS numbers: 64.70.Md, 64.60.Cn

When a system is quenched into its ordered phase,
"domains" of ordered phase will grow as a function of
time. The dynamics of the ordering process are believed
to depend on the dimensionality of the system (d) as well
as the number of components in the order parameter field
(n). In addition, there is increasing theoretical and ex-
perimental evidence that the dynamical structure factor
S(q, t) obeys asymptotic scaling laws. Here q denotes
the length of the wave vector, and t is the time since the
quench. In particular, as the system enters its late stage
of growth, a regime emerges in which there is a single
characteristic length scale L(t). In such a scaling re-
gime, if the system is rescaled with the proper length
scale, the pattern of the ordered phase at later times
would look similar to that at earlier times. Such scaling
phenomena have attracted much interest lately [I].
Probably the most studied case of phase separation is the
spinodal decomposition in binary mixtures (e.g., metal al-
loys, fluid mixtures, polymer and glass blends). Here the
order parameter is a scalar, the composition, and the
symmetry is discrete. There is ample experimental and
theoretical evidence that the structure factor assumes the
form S(q, t)-L(t) g(qL(r)) in three dimensions. For
large q, the scaling function g approaches the Porod form

q . The question arises whether there is similar scaling
behavior in dimensions other than three and in systems
with more complicated order parameters. Recent theo-
ries [2-4] suggest that the asymptotic behavior of the
structure factor in the scaling regime obeys a surprisingly
simple scaling law of S(q, t) —L(t) g(qL(t)). The scal-
ing function approaches asymptotically g(x) -x
where d is the dimension of the system and n is the num-
ber of components of the order parameter. The above-
mentioned Porod law S(q) —q is recovered as the spe-
cial case for d=3 and n =1. In addition, the characteris-
tic length scale is expected to grow with time according to
L(t)-t'~. Although these predictions have been made
for n-component vector models, one expects that they
should be applicable to systems with more complicated
internal symmetries like liquid crystals. For thin films of
nematic liquid crystals in which boundary conditions con-
strain the director to behave like a spin vector of a 2D XY
model, n 2 and d 2. The situation is more complicated

in three dimensions. For a uniaxial nematic, the order
parameter is a traceless second-rank tensor. If one takes
n to be the number of independent components of the or-
der parameter, this would imply n 5. On the other
hand, if one considers the relevant part of the order pa-
rameter to be the director field, one would expect n 3.
Alternatively, the fact that the dominant defects in a
nematic liquid crystal are stringlike, such as those exhib-
ited by a 3D XY model, would suggest n 2. At present,
a consensus on the value of n for a three-dimensional
nematic liquid crystal has not been established. Address-
ing this interesting theoretical issue should be very reveal-
ing.

In this Letter we report the measurements of the struc-
ture factor for a lyotropic liquid-crystal system quenched
into the nematic phase. We studied the optical scattering
of the isotropic-nematic transition of cesium perfluoro-
octanoate (CSPFO) in both two and three dimensions.
CSPFO was chosen because of the ease of preparation
compared to other lyotropics [5] and the slow ordering
time scale involved. The difference in index of refraction
between the two optical axes is much smaller than that of
the thermotropic liquid crystals. The latter are very
strong scatterers of visible light in the nematic phase and
thus unsuitable for quantitative light scattering experi-
ments due to multiple scattering problems. Solutions of
CSPFO are weak scatterers and do not cause these prob-
lems. Furthermore, the CSPFQ system was very well
studied and the complete phase diagram was readily
available [6].

The sample used in this experiment was prepared by
reacting cesium carbonate (CsCO3) and perfluoro-
octanoic acid [CF3(CF2)6COOH] in a bath of hexane.
The precipitate was then dried and recrystallized from a
mixture of hexane and ethanol (I:I by volume). Finally,
the CSPFO crystal was dissolved in heavy water (D20)
with a mass ratio of 1:1.857 and then filtered by a 0.5-pm
Teflon filter into the sample cells. Because the phase
boundary is very sensitive to the composition, care had to
be taken to have air-tight sample cells. The isotropic-
nematic transition temperature of the solution was at
28 C.

The experimental setup to measure S(q, t) has been
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FIG. 2. S(q) vs q for 3D sample at 300 (crosses), 870 (cir-
cles), and 1650 sec (triangles) after the quench.
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FIG. 1. The pattern of nematic domains under cross polariz-
ers for 3D sample (a) before the quench and (b) 4 min, (c) l0
min, and (d) I l4 min after the quench.

described elsewhere [7l in detail. The sample in the form
of a thin slab was placed right at the focal point of a par-
aboloidal mirror which collected a wide range (approxi-
mately 0' to 40' scattering angle) of scattered light and
converted it into a bundle of parallel beams. The bundle
was then fed through a lens system for collimation so that
the whole bundle could fit onto a square charge-coupled-
device (CCD) chip of 10.25X10.25 mm size. The CCD
had an active area of 512&512 pixels. This system
offered an advantage of measuring a wide range of S(q)
simultaneously which is crucial in order to study S(q, r)
in real time.

Two sample cells were used in this study. For the

study of the three-dimensional behavior, the cell was a 1-
mm-thick cuvette sealed by a Teflon stopper with rubber
0 rings. For the dimensional crossover study, the cell
was made of two pieces of 2. l-cm-diam glass windows

with a small 0.5-mm Teflon spacer placed in between
near the rim. The windows were glued with epoxy and

formed a wedgelike cavity where the liquid was sealed.
The thickness of the accessible portions of the wedge
varied from 95 to 400 pm. During the experiment, the
samples were first annealed at 2 above T„then

quenched to 1 below T, into the nematic phase. For
completeness reasons we want to point out that the sam-

ple, like those studied by other researchers, had a 0.5 re-

gion of coexistence between the isotropic and nematic
phases as characterized by forward light scattering. The
quench procedure described above thus took the sample
from the isotropic phase to 0.5 into the nematic phase.
The quench rate was 1.7 C per min. Since the measure-

surements were done in the one-phase nernatic region,
and since the time scales of interest (-10 sec) were
much longer than the time the sample spent in the coex-
istence region (18 sec), we do not believe that the pres-
ence of a coexistence region is relevant to our observa-
tions.

A series of microphotographs taken with the sealed cu-
vette sandwiched between a pair of crossed polarizers is

shown in Fig. 1. The sample was quenched from 30 to
27'C. A scale bar shown is 1000 pm long. When the
sample was in the isotropic phase, it was optically inac-
tive and appeared dark in the photograph. After the tem-
perature quench, the characteristic nematic Schlieren
patterns due to the optical activity were observed. It can
clearly be seen that the patterns were coarsening with

time.
The S(q) for the sealed cuvette is plotted as a function

of q at 300, 870, and 1650 sec after the quench in log-log
scale in Fig. 2. The solid line is a fit to the scaling region
of the 300-sec data. The slope of the line is —6.0+ 0.3.
This is consistent with the scaling form S(q, t)-L(t)
x lqL(t)] t +" with d=3 and n=3. The deviation
from the power-law behavior in the small-q region reflects
that at such early times as 300 sec the characteristic
length scale L(t) has not grown large enough to bring the
product qL(r) into the asymptotic regime yet. When the
length scale grew to larger values at later times, the scal-
ing regime extended to regions of lower q values as shown

in Fig. 2. The scaling regime at a difkrent time could be
fitted with the same functional form:

S(q, r) =A*q

The amplitude 8*, arbitrarily normalized to 1 at t =210
sec, is shown in Fig. 3 as a function of time after quench
in log-log scale. The data are fitted well with a straight
line of slope —1.50 ~ 0.15.

Consider the following relationship:
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FIG. 3. Amplitude of the power law (A ) vs time after
quench for 3D sample.
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FIG. 4. S(q) vs q for 2D sample at 200 (crosses), 600 (cir-

cles), and 1400 sec (triangles) after the quench.

S(q, t)-L(t) 3q s-A (t)q (2)

A (t)-t t would thus imply that the characteristic
length scale was growing with time in a t' fashion. This
growth of the scaling length is consistent with previous
observations of Chuang, Turok, and Yurke [g], Mondello
and Goldenfeld, and Toyoki and Honda [9] and recent
computer simulation results of Mondello and Goldenfeld
[10]. We have also quenched the sample to 2' below T,
to study the quench depth dependence of the dynamics.
We did not observe any quench depth dependence for the
range studied.

When the experiment was repeated on the wedge cell,
strikingly enough, the system displayed two-dimensional
behavior when the thickness was thinner than 100 pm.
In two dimensions with both d and n equal to 2, the
theoretical prediction would become S(q)-q . In-
deed, as shown in Fig. 4, the slope of the scaling regime
did become —4 in this case. The results for 200, 600,
and 1400 sec after the quench are shown in the figure.
The solid line is a fit to the linear regime of the set at 600
sec. The fitted slope yields a value of —4.1+0.3 which
is in good agreement with theories. As a matter of fact,
under closer inspection of Fig. 4, the first trace at 200 sec
would yield a slope steeper than —4 for the scaling re-
gime. This could be understood in terms of dimensional
crossover. At early times (e.g., 200 sec after the quench),
the length scale of the system is still shorter than the
thickness of the sample (100 pm in this case) and the sys-
tem is not fully two dimensional. Indeed, when the mea-
surements were repeated on thicker regions, the slope ac-
tually started out at about —5. Only after about 1000
sec did it gradually drop to a value of —4. For sample
thicknesses larger than 250 pm, the system recovered
pure 3D behavior.

In analogy to the previous case, we fitted the S(q) re-
sults at different times to A q and found the time
dependence of A*(t) as shown in Fig. 5. The solid line in

the figure is a fitted line of slope —1.05 ~ 0.2. Consider
the following relationship in 2D similar to Eq. (2):

S(q, t)-L(t) 2q 4-A (t)q (3)
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FIG. 5. Amplitude of the power law (A ) vs time after
quench for 2D sample.

A (t)-t ' would imply that the characteristic length

was growing with time as t It also [3]. The essential
reason for the same square root of time dependence of the
length scale is that the order parameter is governed by
the same differential equation in both 3D and 2D, where

the dimensionality has no effect on the time dependence
[I I]. Previous studies of the annealing of two-dimen-

sional polymer nematic liquid crystals [12] have reported
a characteristic length growth as t

In conclusion, we have observed a novel power-law and

scaling behavior of the structure factor for a system with

a nonscalar order parameter in both two and three di-
mensions. Unfortunately our experiments do not allo~ us

to determine the absolute value of L(t). An independent
experiment measuring the magnitude of the length scale
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involved should be revealing. In the simple case of d =3
and n =I, L(t) has the very intuitive and physical mean-

ing of a domain size. In the cases (d=3, n=3) and

(d =2, n =2), however, a physical picture for L(t) is not

obvious. Our results are in excellent agreement with

theoretical predictions for the case (d=2, n =2). The
three-dimensional data also obey the scaling form

S(q, t) —L(t) [qL(t)] +" for d=3 provided n=3.
These are the first observations of such power-law behav-

ior for systems with a nonscalar order parameter.
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