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Scenarios for the Nonlinear Evolution of Alpha-Particle-Induced Alfven Wave Instability
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Various nonlinear scenarios are given for the evolution of energetic particles that are slowing down in

a plasma and simultaneously excite the background plasma waves. Depending on the relationships be-
tween the source, the background damping, and the classical transport rate, either a steady state or pul-
sations arise. At the predicted saturation levels, anomalous particle transport is rather low. However, if
the particle orbits are stochastic at the amplitude level needed to balance the growth rate with the wave

trapping frequency, a phase space "explosion" occurs, giving enhanced transport.

PACS numbers: 52.35.Bj, 52.35.Py, 52.35.Qz

The problem of alpha-particle confinement under igni-
tion conditions has been of considerable interest recently
as there is concern that they can be anomalously lost due
to their excitation of Alfven waves [1-7]. Recent experi-
ments with neutral beams [8,9] have established such be-
havior. The nonlinear consequences of this instability
have been the topic of several theoretical treatments
[5-7]. In this Letter we generalize the previous works by
Berk and Breizman [5] (BB) to obtain a broader descrip-
tion of the nonlinear behavior of high-energy particles
(which we will refer to as alpha particles; in deuterium-
tritium fusion conditions this is a proper designation,
though more generally these particles need only be super-
thermal and they can arise from beam injection, ion cy-
clotron heating, etc.).

In BB the nonlinear problem was considered as a gen-
eric problem where similar mathematics applies to the
bump-on-tail electrostatic plasma instability or the
universal instability drive that excites electrostatic drift
waves or electromagnetic Alfven waves. As the wave-

particle interaction for the electrostatic plasma oscillation
is a paradigm in nonlinear dynamics, we will discuss this
problem in parallel with the mathematically "isomorph-
ic" problem of alpha particles exciting Alfven waves in a
tokamak. What is required in these problems is to have a
weakly damped wave existing in the background plasma
in the absence of energetic particles. The energetic parti-
cles are injected at high energy, slow down by drag, and
their pitch angles diffuse in velocity space through classi-
cal scattering. These classical processes establish an
equilibrium with the source of energetic particles.

Instability will be possible if the shape of the alpha-
particle distribution F is destabilizing in the vicinity of a
phase-space region where particles resonate with the
background wave. For the bump-on-tail instability, we
require, in the vicinity of k- v =co,

;(v) )0,
k. v ~F

8v

with k the wave number, cu the wave frequency, and v the
energetic particle velocity. For the universal instability in
a tokamak we require, in the vicinity of pmz=m —neo~
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where E„,„, is the energy of the wave. . (For electrostatic
plasma waves,

where p is an integer, 0, is the alpha-particle gyrofre-
quency, toe is the poloidal transit frequency, to„ is the
toroidal transit frequency, and it is assumed that 8FJ
rlv (0. Because of toroidal symmetry, the wave ampli-
tude is taken to be proportional to exp(in'), with n an in-

teger.
In BB a steady-state nonlinear wave was predicted

when the classical transport of alpha particles is account-
ed for. The solution allows for a balance between the
nonlinear alpha particle instability drive and plasma dis-

sipation. In this Letter we show that such a solution re-
quires the background damping to be sufficiently weak.
However, for stronger background damping rates, we now

show that the nonlinear solution is unstable. In this case
a new nonlinear scenario emerges. The system no longer
maintains a steady-state solution. Instead the response is
that of pulsations, as described below.

Suppose yL» yy, v,p, where yL is the linear growth rate
that would be predicted from the distribution function
that forms from a classical relaxation process in the ab-
sence of excitations, yq is the dissipation rate of the excit-
ed wave caused by the background plasma, and v,a is the
rate of reconstruction of the unperturbed distribution
function after it has been flattened in phase space by a
nonlinear wave. Typically, pitch angle diffusion dom-
inates this process, and in this case v, lr

——v(to/rob),
where v is the 90 velocity pitch angle scattering rate,
and cob is the trapping frequency of resonant particles
trapped in the wave.

Let us first suppose that v,g» yd. In this case the BB
solutions are appropriate. In steady state a wave is
found, where the power P, which is transferred from the
alpha particles, is given by
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~wave =
J d'r lb81'/4+,

where BB is the perturbed magnetic field and the equal
contribution of perturbed kinetic energy is accounted
for. ) Generically, rob ~ @'i with @a measure of the per-
turbed field amplitude [e.g., @=bE for plasma waves
with ro$=(e/M, )kbE]. This power is absorbed by back-
ground dissipation: Pd = —2y~F. „,. „,. Hence, with P,
+Pd =0, the saturated wave amplitude satisfies

rob yL ves'/3d (yr. vro'/yd) (4)

As we assumed yd & v, fl, we see that the relaxation
process pumps the wave to an amplitude @ that gives a
trapping frequency higher than the linear growth rate.
We further find v,s/yq = (v,sp/yd) ', with v, sp
=vro /yL. The significance of v, pp will be clarified
below. We also note that in this regime v,flp) v fl ) yd.

If v,s« yd, the predicted trapping in Eq. (4) is lower
than yi. In this case the nonlinear steady-state distribu-
tion function found in BB is unstable, basically to the
same linear instability that exists in the unperturbed
state. This observation readily follows from closely ex-
amining the response of linear theory. The linear growth
rate for a smooth distribution function formed in the ab-
sence of nonlinear waves is proportional to a quantity D
given by the following expression:

kv 8F,D= —Im d v
co k'v Qp

F.=x d vk v 'b(ro —k v).
|Iv

[For the Alven wave problem there is a similar structure
for D with

aF. aF.
k v-

2
(ro —co~, ) 2 G~ „(v), co —k v ro —proc,

it ir

where Gz„(v) is a positive slowly varying function of
phase space. ] One readily demonstrates that yL cx: D.

Now in the case v, fl. «yd, the nonlinear distribution
function found in BB is essentially the same as the unper-
turbed case, except in a small resonance region where
particles are trapped in the wave. There the distribution
is flattened over a phase-space region

bv = rob/k =bvb

(note that it is shown in BB that for the Alven wave prob-
lem Bv transforms to a positionlike variable in the case
ro«co+„viz. , bv/v br/r). Outside this region virtual-

E„,„,.=J d r ibEi /4ir,

where the bar refers to time average, BE is the perturbed
electric field, and equal energy contributions are taken
into account for perturbed electric field energy and per-
turbed kinetic energy. For Alfven waves,

ly the same self-consistent F, is obtained as in the unper-
turbed case. Hence, if one attempts to evaluate D(ro) in

Eq. (5), with this locally IIattened distribution function,
one finds that though D(rop) 0 with rop the real fre-
quency of the background oscillation, the value for
D(rop+iyi ) is hardly changed at all from the smooth
case [the difference is 6(rob/yi )]. Hence the BB
steady-state solution is unstable for sufficiently large yd,
ViZ. , yd )) Vefl + VeflP-

This result indicates that the nonlinear response in the
yd » v, flp limit cannot be a steady state. Instead the fol-
lowing pulsation scenario seems consistent. Suppose the
linear instability with the smooth F distribution develops
at the rate yl. The distribution function for the bump-
on-tail instability would initially look like the smooth
solid line in Fig. 1, just when instability begins. Then, as
basic and straightforward arguments indicate, the wave
amplitude will grow until the trapping frequency of the
wave reaches the linear growth rate yL (we define robp as
that trapping frequency in which rob =yI.). The wave
flattens the distribution function in the resonant region
which destroys the resonant particle drive, much in the
same manner as described by O' Neil [10] and Mazitov
[I ll and it is depicted by the dashed curve in Fig. 1.
However, with the background dissipation present, this
wave will now damp according to the equation dF. „„,„,/
dt = —2ydE„,. „,. Simultaneously, the classical transport
mechanism attempts to reconstitute the unstable distribu-
tion function at a rate v, flp as the flattening of the distri-
bution function only occurred in a phase-space region
bt'/i'p = cosp/ro = yI. /ro, where k vp=ro [or proc(vp) =co].
Thus the time for the wave energy to disappear is 1/yd,
while the time for the reconstitution is I/v, sp. After a
time I/v, sp the distribution is again ready to excite waves
and grow to an amplitude where roq —yL. During inter-
mediate times, 1/yd & t & I/v, ap, precursor instability
may arise, for example, when the distribution is shaped

f(v)

FIG. 1. Time behavior of the bump-on-tail distribution func-

tion near the resonant mode phase velocity. The solid curve in-

dicates distribution just before its major relaxation, the dashed

curve is just after the major relaxation, and the dotted curve is

at an intermediate time during which the distribution is being
reconstituted.
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eigenmode where the mode is excited at different poloidal
mode numbers throughout the radial profile [3]. Hence
the alpha particles can then be either lost to the boun-
daries or, if the system is large enough, the distribution
function is flattened to a profile that is stable to linear
analysis.

To obtain a feel for the stochastic threshold we note
that from Ref. [12] one finds that yt/ta-Sq p, for
moderately high n modes, where P, is the beta value of
the alpha particles. For these modes the trapping fre-
quency and stochasticity threshold have been reported in

Ref. [13] to be

BBe BBg 1

B B 16nq

respectively. Thus a very rough criterion for the onset of
stochasticity is

p, ) I/20q I n'I

Though only rough scaling arguments are given here,
these suggested scenarios seem compatible with experi-
mental observation [8,9]. More careful quantitative stud-
ies are of course needed.
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