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We propose a simple ansatz that relates the diffusion propagator for the molecules of a fluid confined

in a porous medium to the pore-space structure factor. Theoretical arguments and numerical simula-

tions show that it works well for both periodic and disordered geometries. The ansatz allows us to decon-

volve structural data from momentum dependent pulsed field gradient spin-echo data.
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In a classic paper entitled "Can one hear the shape of a
drum?, " Kac [1] considered the problem of determining
the geometry of the boundary from the eigenvalues of the
difl'usion equation in a region surrounded by perfectly ab-
sorbing walls. More recently, de Gennes [2] discussed an

analogous problem related to the decay of magnetization
in a region where the relaxation rate at the boundary is

infinite.
The present paper is concerned with extracting infor-

mation related to the morphology of porous media from
the wave vector (k) and time (t) dependent pulsed field

gradient spin-echo (PFGSE) amplitude, M(k, t) [3-7].
Physically, M(k, t) is the spin-echo amplitude in which

the dephasing and rephasing of the transverse magnetiza-
tion are modulated by two sharp gradient pulses [i.e., the
z component of the magnetic field is changed by g rf(t),
where f(t ) =0 except for two intervals, a distance t

apart, each of duration b]. If a spin originally at position
r diffuses to r1 at time t, its net phase change is y8'g

(r —r~), where y is the gyromagnetic ratio. The wave
vector k=ybg is therefore a tunable parameter. Formal-

ly, M(k, t) is given by the diffusion propagator [3-7] for
a fluid molecule confined to the pore volume, Vp,

M(k, t) drdr~e "G(r, r~, t),

which satisfies the equation

8G(r, r), r)
=DpV G(r, r(, t), r & 0,

G(r, r~, t =0+)=b(r —r~) .

Here Do is the bulk molecular diffusion constant and the
reflecting boundary condition, n. VG(r, r~, t)~, ~&=0, is

imposed at the pore-grain interface X.
We are concerned with how the spectrum and eigen-

functions associated with Eq. (2) are influenced by the
structure of the pore-grain interface. This problem is of
interest because recent papers [5,6] indicate that PFGSE
measurements may provide a probe of the pore geometry
over a range of length scales (0.10 10 pm) not accessi-
ble to standard techniques like x-ray and small-angle
neutron scattering. We emphasize, however, that the re-

lationship (1) between the PFGSE amplitude and the

morphology of the pore space is not clear-cut. To simpli-

fy this relationship we propose a simple ansatz that links

the measured amplitude directly to the pore-space corre-
lation function. In periodic systems, a combination of an-

alytic results and computer simulations indicates that the
ansatz provides an excellent approximation to M(k, t).
In addition, simulations on disordered sphere packs are in

good accord with the recent experimental results of Cal-
laghan et al. [6].

To extract geometrical information from the propaga-
tor G, consider, first, the short-time regime, (Dpt ) 'l « a,
where a is a typical pore size. We assume that the pore
surface is locally flat, and not a fractal. In the short-time
regime, only walkers within a distance (Dpt)'l from the
walls, of area S, sense the presence of the walls. Thus,
only a fraction S(Dpt) 'l /V„of the total number of walk-

ers deviate in their behavior from a free random walk,
and the deviation of the propagator from a free Gaussian
is also of this order. To be more specific, the fact that
near a flat reflecting wall the Green's function is the sum

of a free Gaussian and its image implies [7] that the
efl'ective diffusion coefficient at time r, D(t) =(~r(t)
—r(0)

~
}/2dt, varies as

D(l), 4=1 — +O(Dpt),
3d n

(3)

as t 0+ where d is the spatial dimension. Provided the
pore surface is isotropic, the coefficient of k ~ in the loga-
rithm of the PFGSE amplitude at time t is simply tD(t).
It should therefore be possible to extract the surface to
volume ratio experimentally from the PFGSE amplitude
using this procedure. We will see that the accuracy of
Eq. (3) is supported by numerical simulations.

Next consider the long-time regime (Dpt ) 'l » a.
While an exact representation of the propagator for an
arbitrary pore geometry is diScult to obtain, the essential
physics is straightforward. The diffusion propagator in

free space is a Gaussian. The propagator in a porous
medium can be thought of as a Gaussian modulated by
the presence of excluded regions, i.e., as a Gaussian with
the grain space cut out of it. For an isotropic pore space,
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this idea can be encapsulated in the following phenomenological ansatz, G~(r —ri, r), for the propagator averaged over
the mean position of the initial and final points [i.e., over (r+ri)/2):

Gg(r —r, , i) = C(t)
exp

[4' i (i)i)di'
(r —r1) ' S(r —ri), r ~ 0.
4Di r r

(4)

Here S(r —ri), the connected pore-space structure func-
tion, is defined in terms of the characteristic function
g(r) [g(r) =I for r in the pore space and g(r) =0 for r in

the solid phase),

S(r —ri) = dRg(r+R)g(ri+R) .
1

In Eq. (4), C(t) is a normalization constant and Di(t) is
an effective width of the Gaussian. These parameters are
determined by the simultaneous conditions

„I drG (r, i) =I, (6a)

ki
M&(k, r) -C(r) exp[ —(k —ki)'Di(r)r] [y(2n

(2n)

where S(k) =fdre"'[S(r) —p] )0 is the Fourier trans-
form of S(r) —

p, and p is the porosity (i.e., the volume
fraction occupied by the pore space). We emphasize that
the inequality S(k) ~ 0 guarantees that the ansatz will

always yield a positive definite PFGSE amplitude. Note
that R 00, S(R) p. For an isotropic geometry,
tIS(R)/8R —S/4Vp, one quarter of the surface to
volume ratio [8], as R 0 (excluding fractally rough
surfaces). The large k behavior of M~(k, t) is therefore
related to S/Vz. Thus, the ansatz implies that the
PFGSE amplitude, M~ (k, t ), is an effective Gaussian
plus the Fourier transform of the structure function of
the pore space convoluted with the same effective Gauss-
ian. For the cases considered below it turns out that
Di(i) = D(t); thus one obtains a formula with a single
phenomenological input, i.e., the effective diffusion con-
stant, D(t), which can be extracted from the k depen-
dence of measured M(k, t).

In the case of periodic geometries, it can be shown that
the ansatz reproduces certain exact results. There the
propagator may be evaluated in terms of eigenfunctions
[7] which satisfy the Bloch-Floquet theorem: y„q(r)
=e ' 'u„q(r), where n is a band index, the function

u„q(r) has the translational periodicity of the underlying
Bravais lattice, and q is a vector in the first Brillouin zone
of the reciprocal lattice. Given an arbitrary momentum
vector k, the magnetization density can be written as

M(k, t) =P„e " (u„q(K)( . Here K is the unique
reciprocal-lattice vector that returns k to the first zone,
i.e., k=q+K and u„q(K) —= Q~ 'f exp(iK r)u„q(r)dr
with the integration confined to a single unit cell whose

pore volume is 0„. The splitting between the two lowest
bands is of the order of Dp/a, where a is the lattice con-
stant. For r »a /Dp, the lowest band controls the above
sum and, assuming that the effective mass tensor is iso-

„ldr G~(r, i)r'=((r(i) —r(0)( ) =2dr D(r) .

[The integrations in (5) and (6) extend over the entire
volume of the system. ] By construction, the ansatz
satisfies a diffusion equation (with a frequency and wave
vector dependent diffusion constant) that reduces to the
true coarse-grained diffusion equation at long wave-
lengths and times. In the Laplace-wave-vector domain,
sG&(k, s) = —k Dq(k, s)G&(k, s)+ I, where from Eqs.
(6) it follows that lim, p+[limt. -pDg(k, s)) =D«where
D «=li m, D(r) is the macroscopic diffusion constant.
In momentum space, the ansatz predicts that

(6b)

)'a(kl)+s(ki)] 0,

tropic [i.e., that Ep(q) = q D«t, we have

M(k, t) =e " " ''(uo (K)( (q«a ').
Remarkably, M(k, i) does not decay as i ~ when
k=K. In other words "Bragg peaks" appear in M(k, t)
at reciprocal-lat tice vectors. The ansatz for periodic
geometries is

Mg(k, t) =C(r)ge " " ' ' '(g(K)f'. (9)

Since upp(f) =g(f), the characteristic function of the

pore space, is the solution of the diffusion equation with

eigenvalue zero, Eq. (9) becomes exact t ~. The
right-hand side of (9) is a sum of Gaussians, all of the
same width, centered around reciprocal-lattice vectors,
with heights given in terms of the Fourier transforms:
g(K) =0„'Jexp(iK r)g(r)dr. Thus, for a connected
periodic pore space of arbitrary shape, a knowledge of
M(k, ~), which is a set of delta functions, specifies the
lat tice geometry completely.

At intermediate times, the propagator can only be cal-
culated numerically. We have performed random walk

simulations [9,10] on several ordered grain consolidation
(GC) models [11]. The results of simulations show that
the ansatz is a good approximation even at intermediate
times. The approximation Di(t) =D(t) has been used to
calculate M~ (k, t), D(i) being an input from the simula-

tion. Typical results are shown in Fig. 1, where data for
a simple cubic model is displayed for a given direction of
the It, vector. We can see that the two sets of curves cor-
responding to M~(k, t) and M(k, t) almost overlay each
other even at intermediate times, although there are devi-

ations near the minima ~here the values obtained from
the simulations are dominated by statistical noise. We
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Wavevector (1,0,0) %avevector

FIG. I. Comparison of the ansatz (dashed curves) with nu-

merical simulations (solid curves) based on a simple cubic
sphere pack. The wave vector is taken in the (100) direction.
The three comparisons correspond to 10000, 70000, and
130000 random walk time steps. Similar agreement is seen for
other directions in k space and for other periodic structures.

FIG. 3. Comparison of the ansatz (dashed curves) with nu-

merical simulations (solid curves) based on an unconsolidated

random sphere pack. The arrow on the horizontal axis marks
the wave vector k 2z/(2Re). The four comparisons corre-
spond to 1000, 21000, 41000, and 61000 random walk time

steps.
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conclude, therefore, that the ansatz is at least qualitative-

ly correct at all times for these and related periodic
geometries.

Consider, next, disordered model systems based on ran-
dom sphere packings. We have considered two systems,
the first being an unconsolidated packing (II 0.42) and
the second a system in which the porosity is reduced to

0.26 by the standard GC algorithm of uniform grain
growth [I I]. The normalized structure functions, So(R)
=(I —(I) '[S(R)—(I] for these two systems are shown

in Fig. 2. To check the accuracy of Eq. (3), we have

looked in detail at the short-time behavior of the diffusion
constant D(t) for the II 0.42 system. The inset in Fig. 2
shows that the agreement is excellent. A comparison of
the results of diffusion simulations [9,IO] and the ansatz
(computed with the structure factors shown in Fig. 2) is

given in Figs. 3 and 4. In both cases, the two are found
to be in reasonable agreement. Callaghan et al. [6] have
measured PFGSE amplitudes for water saturated random
packings of polystyrene spheres with radius Ro 8 pm.
Their data show a rounded peak in the PFGSE amplitude
(similar to the structure seen in Fig. 3) at around
k =2m/(2Ro). These authors interpret their data in

Wavevector

FIG. 2. The normalized pore-space correlation function,
Se(k), is shown for a &=0.426 random sphere pack (solid
curve) and for the same packing consolidated to /=0. 260
(dashed curve). The &=0.426 case corresponds to the experi-
mental situation discussed in Ref. [6]. Inset: The initial behav-
ior of the diffusion constant D(r) (solid dots) compared with
the prediction of Eq. (3) (dashed line) for ts=0.426 packing.
The value of S/V~ was calculated from the R 0 limiting be-
havior of S(R).

FIG. 4. Comparison of the ansatz (dashed curves) with nu-

merical simulations (solid curves) based on a consolidated ran-
dom sphere pack. The arrow on the horizontal axis marks the
wave vector k 2m/(2Re). The six comparisons correspond to
1000, 21 000, 61 000, and 101000 random walk time steps.
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terms of a simple model, consisting of identical pores con-
nected weakly by narrow necks, so that the magnetization
is uniform within each pore. This model, which can be
likened to a tight-binding model, is inapplicable to their
and many other experimental systems, which consist of a
well-connected pore geometry. The models and tech-
niques developed here are consistent with the data
presented in Ref. [6], but are considerably more general.

There are two difficulties in analyzing real systems.
First, there are internal inhornogeneities in the magnetic
field, which should cause the observed signal to be
different from Eq. (1). Experimentally, this problem
may be reduced by multipulse variants of the stimulated
echo sequence. Second, is the problem of enhanced sur-
face relaxation [7] which may be taken into account by
calculating the propagator for partially absorbing bound-
ary conditions, characterized by a surface relaxation
strength p. We find that, for small p, the PFGSE signal
in presence of surface relaxation, M(k, t~p), is approxi-
mately the product of the total magnetization M(0, t~p)
and the PFGSE amplitude M(k, 1~p=0). Thus we have

M(k, t ~p) =M(0, t~p)M(k, t~p=0); the amplitude of the
packet decays in time, awhile its shape is not greatly al-
tered. One may then analyze the PFGSE amplitude as a
function of k at different fixed times by normalizing the
amplitudes to the same value at k =0 (which removes the
dominant effect of p), and treating the resulting normal-
ized amplitudes according to the analysis given in the pa-
per for p 0.

In conclusion, the PFGSE amplitude probes two kinds
of information about the geometry of the pore space: (a)
at short times, it probes the surface to pore volume ratio
8/Vp; and (b) at long times, it probes (i) the connected
structure factor of the pore space, and (ii) through the
diffusion constant it probes the connectivity and tortuosi-

ty of the pore space. We have presented an exact result

for the short-time behavior, and an ansatz which models
the propagator, for all time and wavelength scales, that
should provide a model-independent way of interpreting
PFGSE data, especially at long times. The analysis
should also be useful in interpreting other experiments
that measure the diffusion propagator in porous media,
e.g. , light scattering experiments from polymers in the
pore space of Vycor glass [12], where a strong deviation
is seen in the momentum space propagator from a Gauss-
ian form at large values of momentum.

We thank B. I. Halperin, R. Kleinberg, L. Latour, and
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