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Effect of Emittance and Energy Spread on a Free-Electron Laser in the Gain-Focusing Regime
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A free-electron laser operating in the gain-focusing regime is discussed. The variation of growth rate,
radius of curvature of wave fronts, filling factor, and e%ciency with emittance and energy spread is de-
rived. The results, which are based on the Vlasov-Maxwell system of equations, are obtained by minim-

izing a variational functional. When plotted as a function of emittance, the eSciency at maximum

growth rate peaks at a nonzero value of emittance. For small values of energy spread, the e%ciency at
maximum growth rate increases with energy spread, in contrast to intuitive expectations.

PACS numbers: 41.60.Cr

We present the results of an analytical study of the
eff'ect of emittance and energy spread [1-15] on a free-
electron laser (FEL) in the gain-focusing regime [16-19]
of operation. Based on the Vlasov-Maxwell equations a
diA'erential eigenvalue equation for the wave number k of
the radiation is derived and solved by a variational tech-
nique. We make use of the scaled parameters of Refs.
[11,15]. However, in contrast to Refs. [11,15], our trial
function depends on a variational parameter. This pa-
rameter furnishes additional information about the radia-
tion field; namely, the spot size and the radius of curva-
ture of radiation wave fronts [18,19]. The stationarity
condition imposed on the variational functional implies

that our results are insensitive to the choice of the trial
function [20]. The variation of growth rate, radius of
curvature of wave fronts, filling factor, and efftciency with

emittance and energy spread is displayed graphically.
The model consists of a matched electron beam and a

matched radiation beam propagating along the z axis
through a planar wiggler. The wiggler vector potential is
given by A =A cosh(k y)sin(k z)e„where A„ is the
amplitude, 2tr/k is the period, and e, is the unit vector
along the x axis. The vector potential of the optical beam
is given by A, =

2 A, (y)exp[i(kz —tot)]e„+c.c., where
to is the angular frequency and A, is the amplitude.

The equations of motion of an electron are derived
from the Hamiltonian function p, (y, p~;t, E—;z) [21]:—

p —— I+ ' ' + [I+(k y) ]+ ' f etxtp[i(k+k )z itot]+c.c-. ',
c 2E m 2c2 2 2i

where E—= ymc2 is the energy of an electron of rest mass m and charge —)e), t is the time, (P„p,, ) are the momenta

conjugate to the coordinates (x,y), a,. ~e)A„,/mc, ftt Jp(g) —Ji(g) is the usual diff'erence of Bessel functions,

and g (a /2) /(I+a„,/2).
In the absence of the optical field electrons perform betatron oscillations in the y-p, , plane. The area in this plane is

the action I=—IJdydp, ,/2tr H/ktt, where H cp, /2E+Ektty /2c is the Hamiltonian for the transverse motion and

kti a k /%2y is the betatron wave number.
The electron distribution function evolves according to the Vlasov equation. For the equilibrium distribution we

choose

exp[ —(y —yp) /cr„] exp( —%21/a k metr))
F EP„I tttpp

" b P„
Jzo„mc
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Jza k mcot,

~dr aF "
d(coz'/c)a, , [y(z')]exp[i&(z')] =0,
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P:' I+ [I+a„,/2+(P, /mc) +J2a k„,l/mc-]/2y

and y and p, . denote the location of an electron in the transverse phase space at z'=0.

where Ep ypmc is the mean energy, tr, , mc is the energy spread, and ntt(y) nt pexp( —y /2o)) is the spatial density,

with peak value np, p and width try.

In the Coulomb gauge the wave equation for the optical field takes the form

22 ~ 2d Q.v tftt top, a
(2)'+ — —k a, —

dy
2 c '

nl, 2c

where tot, (4xnt, (e( /m)'t and dl dP, dp, .dE. From the Hamiltonian functions, —p and H, it follow-s that
p(z') (k+k —to/cP )z' and y(z') y-cos(ktiz')+ (cp, ,/ksE)sin(ktiz'), where
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kpp/k ktxi/k, ,

p — +
8kpo4 (2ktxi(g) '"

(4)

Equation (2) may be written as Xa, (y) =0, where X is a linear operator. The eigenvalue k may be obtained by using
t e variational principle bj 0, where J=f— dya, (y)Xa,. (y), a, y(y) =exp( —k,y'/2gti) is the trial function, k,

2yok». I +a„,/2), (tt =k—, (2, /a, , +ik, /R) ' is the variational parameter, a,. is the spot size of the optical beam, and R
is the radius of curvature of the wave fronts.

Evaluating the functional J and equating the result to zero leads to
7 r

yo [ 2cr„~ z k,. e k, e
J dx I+ ( [I+(Z*(g*)]l, '

x exp — I+ '

x =0,a„r-— 0 yo 2kporn

kyoto

where x =cl/kttoEoaj, pk = t/oc
—k, e=kppcrt, is the un-

normalized emittance,
]/2 2 [/2

2x Ib a~

Ig I+a /2ktiok, ,

g = yo[ —p+ (I —to/to, ) —2rktto/k —(ktio/k )k, ex]/2o„,
to, =ck„ l~ = 1.7 & 10 yoP, O, 3 is the Alfven current, It, is
the current per unit length, I, is the modified Bessel func-
tion of order r, Z(g) is the plasma dispersion function
[14], tot, ii is the plasma frequency evaluated at the peak
density nt, o, and ktio is the betatron wave number evalu-
ated at yo.

Equation (4) and an equation obtained by equating to
zero the derivative of Eq. (4) with respect to the varia-
tional parameter determine p and (ti. Taking I+(2a„/
yo)(= I in Eq. (4), the scaled parameters are p/D,
(I —to/to, , )/D, ktta(tt, k, e, ktN/k D, and rs„/yoD [11,22].

Figure I shows the scaled spatial growth rate Imp/D,
the scaled radius of curvature ktiDR, the filling factor
cJs/cr, and the scaled efficiency rt/D as functions of k,,e.
In this example the electron beam is initially monoener-
getic, i.e., a„=0, the emittance being due to pitch-angle
scat tering.

All numerical results presented here correspond to the
particular value of "detuning" I —t0/to, that gives the
maximum growth rate. In Fig. 1, for example, the detun-
ing varies from point to point as the emittance changes.

The nonlinear eSciency rt may be determined from the
energy lost by electrons when they are trapped in the pon-
deromotive buckets. It may be shown that ti=2yo~(II-—P„q)/(I+a /2), where P„i, t0/(k„, +Rek) is the phase
velocity of the buckets and () indicates an average over
the distribution in Eq. (I) [I]. Making use of Eq. (3), we
find rt

—Rep+(I —tu/to, ) —( ktiiki/„, )k, .eIt is shown
elsewhere that this expression is in good agreement with
numerical simulations as the detuning is varied [23]. Fig-
ure I (d) shows that as k,.e increases the eSciency at first
increases, reaches a maximum (for both ktta/k„, D = I and
0.1), and eventually tends towards zero. We find that as
k, e increases from small values the diAerence between
the velocities of the fastest growing ponderomotive wave
and the beam increases and this accounts for the initial
increase in eSciency in Fig. 1(d) [8]. Eventually, howev-
er, the slowing down of the beam with increasing emit-
tance predominates and the curve for the efficiency turns
over and tends towards zero.

Our expression for efficiency can be used if the pon-
deromotive wave "sees" the electrons as a cold beam. An
estimate of when this is valid is provided by the relative
magnitude of the axial thermal velocity, P,- &q=&(P-
—(P, )) )'t, and (P, —

P~i, ). Making use of Eq. (3) one
finds

P

P ,ii-
(p: —p.~)

a„kpo
ypD k 0

)/2 g» ]

. (5)
D

Equation (5) indicates that for the dashed portion of the
curves in Fig. 1(d) the ponderomotive wave is resonant
with thermal electrons and the efficiency is expected to be
significantly modified by kinetic effects in the nonlinear
stage of the interaction

To study the eAect of energy spread, Fig. 2 shows the
results, for k, e=0.1, as a function of the energy spread
o„/yoD. Surprisingly, Fig. 2(d) shows that the eSciency
is a monotonically increasing function of &x„/yoD Equa-.
tion (5) indicates that the dashed portions of the curves
in Fig. 2(d) are expected to be significantly modified by
kinetic effects in the nonlinear stage of the interaction
In their region of validity, both curves in Fig. 2(d) indi-

cate a significant increase in the maximum efficiency with

increasing energy spread, in contrast to intuitive expecta-
tions.

In Ref. [11] a variational technique is employed to
study the effect of beam quality in an FEL. However,
there is no variational parameter in the analysis and con-
sequently there is no information about the filling factor
or the curvature of the wave fronts (and no estimate for
the eSciency). A further point that must also be noted
concerns the detuning. We have stressed that at each
point in Figs. 1 and 2 the detuning is adjusted to yield the
maximum growth rate. For example, for k, a=1, a~=0,
and k~/k D = I (Fig. I), we find (I —co/co, )/D =0.27.
This is roughly an order of magnitude smaller than the
detuning indicated in Ref. [11]. Additionally, we find

that the detuning is a sensitive function of the energy
spread on the beam (Fig. 2).

%e have examined the eAect of emittance and energy
spread on the spatial growth rate, radius of curvature of
radiation wave fronts, and filling factor. The analysis is

based on the Vlasov-Maxwell system of equations and a
variational solution of the eigenvalue equation, with a tri-
al function that depends on a variational parameter. %e
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FIG. 1. Plot of ImiclD, kcNRcrblcrc, , and r)/D vs k, e for a
monoenergetic beam. The dashed portions of the curves in (d)
lie in the regime where kinetic effects are expected to modify
the efficiency.

FIG. 2. Plot of ImplD, kicrcR, crblcr„and cllD vs o&llcoD fo r
k, a=0. I. The dashed portions of the curves in (d) lie in the re-
gime where kinetic effects are expected to modify the efficiency.
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have found that (i) as a function of beam emittance, the
efficiency peaks at a nonzero value of emittance and (ii)
for small values of energy spread, the efficiency increases
with energy spread on the beam.
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