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Chaotic Scattering: A Toy Model for the Compound Nucleus
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A two-degrees-of-freedom Hamiltonian system is constructed and serves as a toy model for com-
pound-nucleus scattering. The model contains both direct reactions and isolated and/or overlapping res-
onances. All its properties are in good agreement with the random matrix theory of compound-nucleus
reactions. We attribute this agreement to the chaotic character of the process and its universality.
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Nuclear reactions at low energies, i.e., in the 10-MeV
domain, can be separated into three major classes: direct,
precompound, and compound-nucleus reactions. The
striking dynamical difl'erences between these processes
are also reflected in the time scales typical for each reac-
tion class. Direct reactions are the fastest processes; the
associated reaction time rI is comparable to the time it
takes the projectile to traverse the target nucleus.
Compound-nucleus reactions are the slowest processes;
the associated time scale r, = Il/I is given by the average
width I of the compound-nucleus resonances, in both the
domains of isolated and overlapping resonances. In this
process, the system experiences many nucleon-nucleon
collisions and thereby "equilibrates" before it decays.
The internal equilibration time s,q is much shorter than

Precompound reactions are characterized by an in-

termediate time scale r; with rf «r; «r, ; here the nu-

clear system decays before it equilibrates.
The short time scale rf for the direct reaction signals

that only a few degrees of freedom actively take part in

the reaction. This is why simple dynamical nuclear mod-
els exist which successfully describe direct reactions: the
optical model, the distorted-wave Born approximation,
and the coupled-channels approach. In contradistinction,
the compound-nucleus reactions involve many degrees of
freedom which interact strongly. We are not aware of
any realistic dynamical model for this type of reaction.
Instead, a statistical model using random matrices of
large dimensions has been successfully applied to calcu-
late the mean value and other average properties of the
compound-nucleus cross section, for all values of the ratio
I /d (with d the mean spacing of compound-nucleus reso-
nances of the same spin and parity) [1].

This discrepancy between dynamical modeling of di-
rect reactions and statistical modeling of compound-
nucleus reactions is not an accident. It reflects the near
impossibility of calculating sufficiently accurately the de-
tails of the compound-nucleus excitation function in

terms of the nucleon-nucleon interactions: Now and in

the foreseeable future, we lack the detailed information
on the nuclear forces and the technical tools needed to
calculate the precise location and properties of corn-
pound-nucleus resonances (with a typical spacing of a
few eV). The basic reason behind this impossibility is the

extreme instability of the compound-nucleus resonances.
Indeed, a change of the matrix elements of the nuclear
Hamiltonian by a few eV—i.e., by an amount compara-
ble to the mean level spacing in the neutron resonance
region —is expected to qualitatively change the positions
and partial widths of these resonances. The statistical
modeling which is thus necessary employs the Gaussian
orthogonal ensemble (GOE) of random matrices. This
ensemble is known to reproduce correctly the spectral
properties of dynamical systems which are classically
chaotic [2]. The successful applications of the GOE to
neutron resonances therefore suggest that nuclei can be
related to chaos, and that compound-nucleus scattering is
an example of quantum chaotic scattering.

This view is strongly supported by recent papers in

which a comparison is made between the fluctuation
properties of the scattering amplitudes calculated for
chaotic dynamical systems, and those generated by the
GOE [3,4]. The comparison has emphasized the rapid
fluctuations in energy which happen on a scale of the
mean level spacing and which correspond to the long-tine
behavior of the scattering process. The complete agree-
ment found in this comparison, and the general argu-
ments put forward for its justification [5], show that the
GOE model for compound-nucleus scattering is, in fact, a
universal model for quantum chaotic scattering, at least
for the rapid fluctuations in energy of the elastic and in-
elastic amplitudes. This statement applies for all values
of the ratio I /d.

In this Letter, we go beyond the statement just made.
We wish to show that other concepts formulated in the
framework of nuclear reaction theory likewise apply to
chaotic scattering problems in general, and that the tools
developed in the framework of nuclear physics are useful
in analyzing a generic quantum chaotic scattering prob-
lem. More specifically, we show that an average, nonuni-

tary S matrix can be defined in terms of a running aver-
age over an energy interval containing many resonances,
that this average S matrix can be diagonalized by the un-

itary transformation introduced in Ref. [6], and that by
transforming the entire (nonaveraged) S matrix in the
same way, one obtains a new S matrix, which has all the
properties of the GOE model, with transmission
coefficients defined in terms of the diagonal elements of
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the transformed average S matrix. We emphasize that
these statements apply only to scattering problems which
are chaotic in the classical limit (this is what we mean by
"quantum chaotic scattering"). For scattering problems
which are (close to) integrable and which display many
resonances, these statements do not apply.

We perform this demonstration by constructing a mod-

el with two degrees of freedom which displays chaotic
scattering and exhibits the main characteristics of low-

energy nuclear reactions: elastic and inelastic scattering
with closely spaced, isolated and/or overlapping reso-
nances which have stochastic features. Needless to say,
the parameters of our toy model have nothing to do with

atomic nuclei. In this Letter, we only present the model
and some results. A full description will be given else-
where. With xi, x2 the two position coordinates and

p|,p2 the conjugate momenta, our toy Hamiltonian is

H - —,
' pi' —V(8(x i )+ V28(x i

—I)+ -'
pp + —'

+ Vi„texp[a(xi —x2 —I)] .

We restrict x| to the interval x~ ~ I by letting V2

For the other parameters, we use V|=20, co =0.6, V;„t
0.1, a 3.5, and l-2042, and restrict x2 to —4(x2

(4. In the absence of any coupling between both de-

grees of freedom, i.e., for V;„, 0, the "particle" with

coordinate xi is scattered elastically by a "target" with

internal coordinate x2. The scattering is due to a

square-well potential with depth V and length 1. For all

quantum calculations we took t't = I, so that the intrinsic
motion of the target is modeled as a harmonic oscillator
with energy spacing co. For V;„t&0,inelastic scattering is

possible and to is the energy difference between neighbor-

ing thresholds. The dimension of the S matrix is given by
the number of open channels (and is thus energy depen-

dent). "Compound-nucleus resonances" arise because in

exciting the target, the particle may fall into a bound

state of the square-well potential. This is the same mech-

anism as in actual compound-nucleus scattering. By a

proper choice of parameters, it is possible to make the
mean level spacing d of the resonances small compared to
the threshold spacing to. The interaction term in Eq. (1)
was chosen in such a way that in the classical limit the

system is chaotic. We have also studied cases where the

systerm is (close to) integrable. Such cases are obtained

by taking in the last term of Eq. (I) V;„&=10 and a =0.2.
For incident energies E between (n —I)ru and ntu, with
A=n a positive integer, we have n open channels. For
n 1, we deal with isolated resonances. The average
width I of the resonances increases with n, and for n = 3

we attain the situation I = d. Overlapping resonances
were studied for n =5.

To show that the system (1) classically produces chaot-
ic scattering, we have used the distribution P(t) of the
delay times t, with t defined as the difference between the
time spent by the particle (coming in from the asymptotic
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FIG. 1. Decay probability P(t) as a function of time t in ar-

bitrary units. Inset: Harmonic oscillator angle at the surface of
section defined by xl =0, for outgoing trajectories vs incoming

ones; for details see text.

domain xi —~) in the interaction region (defined as

xi &0) and the free traversal time rf. For delay times
t)) rf, chaotic systems have P(t) =e "' and integrable
systems have P(t) =t " with y, 1I, constants [7]. (For

there is no universal behavior. The system-

dependent "direct reactions" dominate. ) Classical "reac-
tion channels" are defined for xi —~ in terms of the
action-angle variables (1,8) of the harmonic oscillator.
We note that for xi — and fixed total energy E, the
action I is an integral of motion and defines a channel.
To generate P(t), we have calculated numerically a large
set of trajectories, all starting at the same [xl (O,E, I;]
but at different starting angles 0;. We have compared
P(t) with an exponential and have determined the
energy-dependent constant y(E)

In the interval 0(E ~ 6, P(t) was found to be an ex-

ponential; see Fig. 1. Moreover, the y;(E) determined

from different entrance channels i were, for the same E,
compatible with each other, i.e., independent of the chan-

nel. We also calculated the angle ef at x|=0of the har-

monic oscillator for trajectories leaving the interaction re-

gion (after scattering) for fixed I; as a function of 0; (in-

set, Fig. I). The pattern is consistent with a multifractal

set, as expected for hyperbolic chaotic systems [8].
Even for a system with two degrees of freedom like (1),

the construction of the full 5 matrix for the quantum case
is still a daunting task. To simplify it, we have adopted a
standard procedure of nuclear physics. It will become
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clear presently that this simplification does not alter the
conclusions reached above concerning chaos for the clas-
sical case. We have decomposed the Hilbert space into a
P space and a Q space, defined by the continuum spec-
trum (bounded spectrum, respectively) of Eq. (1) without
coupling (V;„t=0), and have assumed that PHP is diago-
nal. This approximation suppresses direct reactions due

to scattering of the particle via channel-channel coupling
(mainly in the external region x~ &0), but still does al-
low for the direct reactions arising from processes going
via the bounded space (in the interaction region x ~

)0).
Such direct contributions to S do indeed exist. With
PHP diagonal, it is possible to write the scattering matrix
S,b (with a, b the open channels) as [9]

S,b(E) =e 'b, b 2irr—(g~t )(E)~PHQ
E QH—Q

—QHP

where g, —)(E) are the eigenfunctions of PHP, and b,
the associated phase shifts. We have calculated S,b via
Eq. (2) in terms of the matrix elements of QHQ, QHP,
etc.

Universal behavior in classical chaotic scattering
emerges for t»r, . Quantum mechanically, this corre-
sponds via the uncertainty principle to a rapid energy
dependence of S,b(E). The nonuniversal behavior is
found for t =r„i.e., in the smooth behavior of S,b(E).
We have therefore divided S,b(E) into two parts. The
smooth part (S,b) is obtained by averaging S,b(E) over
an energy interval AE containing many compound reso-
nances. Typically, we have used AE=ro/2. The fluc-
tuating part S" is defined as the difference S,b —(S,b).
As is customary in nuclear physics, we identify (S,b) with
direct reactions and S,"b with compound-nucleus scatter-
ing. We emphasize that the direct contribution is here
defined by a running average and not, as is the case in

stochastic models, by an ensemble average. We have
"diagonalized" (S) by an unitary transformation,
(U(S)U ),b =(S„)b,b, and have defined S"=US"U .
We define the transmission coefficients as usual by
T, =1 —~(S„)~ . We have investigated whether the fluc-
tuation measures for S,b depend on the transmission
coefficients T, in the same way as in the case of the ran-
dom matrix model for the compound-nucleus scattering.
In the latter case, this dependence is known.

The fluctuation measure of central interest is the auto-
correlation function C,b(e) =(S,"b(E)S,"b*(E+e)). For
a =0, it is written in the form

HP 16+ (E)),
(E PH—P) 'PHQ

] 0 JL

1 compound nucleus, with the elastic enhancement factor
W~.

We have tested Eq. (3) both for a~b and for a b.
For ahab, we obtained good agreement between Eq. (3)
and the cross section from the model (2). A much more
sensitive test is obtained by comparing the elastic
enhancement factor with the results obtained by model-
ing the long-lived resonances in terms of the GOE. For
the function C,b(e), the GOE result is given in Ref. [1].
We have used this result and the right-hand side of Eq.
(3) to define the elastic enhancement factors W, for the
GOE. A comparison of these with the elastic enhance-
ment factors for our dynamical model (2) is given in

Table I. The averaged cross section is taken over a finite
energy interval so that the statistical error is expected to
be of the order of I/MN, where n is the number of reso-
nances in the considered interval. Since we have typical
N =50, the agreement between our toy model and the
stochastic theory in Table I is very good. Another test is
obtained by comparing the e dependence of the square of
the autocorrelation function, ~C(e)~, as obtained in the
framework of Eq. (2) with the GOE result as given in

Ref. [1]. For the case of A 5 open channels, this com-
parison is made in Fig. 2. The agreement is seen to be
very good for ~e~ & twice the autocorrelation width where
a finite range of data errors start to play a role. For the

(lS."b(E)I') = [(IV.—I )b.b+I]
c Tc

(3) 0.8—

where the sum on c runs over all open channels. This is
the Hauser-Feshbach formula [10], expressing Bohr's
idea of the independence of formation and decay of the

CO 0.6—

0 4

TABLE I. Elastic enhancement factors W for A=5 open
channels as a function of the transmission coefficients compared
with W"

Channel i

0.2—

0.0
0.0 0.5 1.0

r=e/d
1.5 2.0
~ ~ ~ ~ ~ o

I
I

Tj
W
Wstoch

0.8
2.0
2.20

0. 1

3.7
2.97

0.6
2.4
2.11

0.7
2.3
2. 14

0.6
1.9
2. 1 1

FIG. 2. Modulus squared of the normalized 5-matrix auto-
correlation function for A 5 open channels corresponding to
T.„=2.8 (circles), compared to the prediction of the stochas-
tic approach (solid curve).
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resulting direct elements S„define the usual transmis-
sion coefficients. Within the accuracy available (which is

limited by a finite range of data errors), we have shown

that averaged fluctuating cross section and correlation
function C(e) depend on these transmission coefficients
exactly in the way predicted by the GOE model as
worked out in Ref. [1]. This, in our opinion, demon-

strates very clearly the universal applicability of concepts
and ideas generated in the framework of nuclear physics.

The authors are indebted to T. H. Seligman and A.
Muller for valuable discussions and suggestions. t".H. L.
was supported by CNPq (Conselho Nacional de Desen-
volvimento Cientifico a Tecnologico) (Brazil).

FIG. 3. Modulus squared of the normalized S-matrix auto-
correlation 1'unction for one open channel, T=0.45 (circles),
compared to the prediction of the stochastic approach (solid
curve).

case of a single open channel, the comparison is shown in

Fig. 3, again with very good agreement.
We have also compared the properties of an (almost)

integrable system with the GOE predictions of Refs.
[1,6]. We have found strong differences. For lack of
space, we mention but one: In an (almost) integrable
system, the elastic enhancement factor, defined by the
right-hand side of Eq. (3), easily exceeds the upper bound
of 3 of the GOE model and assumes values as large as 10.

In conclusion, we have shown that the toy model of Eq.
(1), simplified as in Eq. (2), contains both direct and
compound-nucleus reactions in the nuclear physics sense
of these concepts. (Precompound reactions are absent.
We attribute this to the small number of degrees of free-
dom. ) Nondiagonal direct reaction contributions can be
eliminated via the standard unitary transformation; the
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