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Spatial Coherence and Temporal Chaos in Macroscopic Systems with Asymmetrical Couplings
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Coupled map lattices with asymmetric short-range couplings are studied analytically and numerically.
It is shown that with open boundary conditions these systems exhibit spatially uniform, but temporally
chaotic states that are stable even in the thermodynamic limit. The stability of this state is associated
with the appearance of a gap at zero wave number in the spectrum of the linear operator describing the
Auctuations about the uniform state. The long-range order is unstable to noise. We calculate the finite

coherence length of the chaotic state in the presence of weak noise.

PACS numbers: 05.45.+b, 47.20.—k

x;(n) =x(n), x(n+1) =f(x(n)). (2)

The steady state of this solution is chaotic if the corre-
sponding Lyapunov exponent po defined by

r ' I/n

p.= I m Q (f'( .(i))~
pg~ oo 1~/

is greater than 1.
Models of CML have been studied, mostly with sym-

metric forces, i.e., yl =y2, and periodic boundary condi-
tions [1,2,4,5]. Under these conditions it is straightfor-
ward to show that the spatially uniform state is unstable
in the chaotic regime, i.e., for po& 1. In this paper we
consider the asymmetric case yl&y2. We show that de-
pending on the values of yl and y2 the nature of the local
instability may be of the convective type [9,10]. Hence it
is very sensitive to the imposed boundary conditions. In
particular, for open boundary conditions this coherent
state will be stable in a nonmoving frame. Furthermore,
we will show by numerical simulations that for these

Can a long-range spatial order exist in a temporally
chaotic macroscopic system with short-range interac-
tions? Studies of this question using a variety of models,
in particular coupled map lattices (CML), have shown
that in the temporally chaotic states of these models the
spatial correlations decay with a finite correlation length
[1-5]. These results have been interpreted to show that
generally temporal chaos in large systems leads to the loss
of spatial coherence. The purpose of this Letter is to
show that stable long-range coherence can coexist with
temporal chaos even in macroscopic systems with short-
range interactions (see also discussions in [6]).

We consider a one-dimensional CML [3,7,8] with
nearest-neighbor couplings, given by the following equa-
tions:

x,(n+1) = (1 —
y)

—yz)f(xj(n) )

+y~f(xj ~(n))+yzf(xJ~~(n)),

where y~ and y2 are the coupling constants, and f(x) is a
map of the interval onto itself. For all values of y~ and

y2, Eqs. (1) have a spatially uniform solution of the form

N

gj(n) g C 1i,"(k )e'
m I

(5)

where k 2ttm/N and m 0, ~1,~2, . . ., and the ei-
genvalue spectrum A, (k) is given by

)L, (k) po[l —
y~ (1 —e '") —y2(l —e' )] . (6)

Stability of a mode implies that (A, (k)( & 1. We are in-

terested in the limit of a large system, N ~, with fixed

y~ and y2. In this case, the spectrum 1I, given by Eq. (6)
forms a continuous band, and in particular A, (k) po for
k 0. Hence if po&0 not only is the uniform mode,
m =0, unstable but there is a band of nonuniform unsta-
ble modes, implying that under small perturbation the
spatial coherence of the system will be destroyed.

To study the nature of this instability we consider the
evolution of a smooth initial perturbation, i.e., we solve

Eqs. (5) assuming C~ 0 for m ~. Converting the
sum over m to an integral over k and evaluating it in the
long time limit using the saddle-point method, one finds
that (1(n) tLA, "(ko). The complex wave number ko is
determined by the saddle-point condition &Ink, (k)/8k 0
[11]. Using Eq. (6) yields exp(2iko) = y~/y2, and

A(ko) =po[1 —
y~

—y2+2(y&y2)' ]
-p.[1 —(y,'"-y,'1')']. (7)

For values of y~ and y2 such that A, (ko) ( 1 the instability
is convective: At each point j, (J.(n) decays exponentially
with n for large n, although the perturbation grows with
time in an appropriate moving frame.

The prediction regarding the decay of the perturbation

boundary conditions the uniform state is globally stable.
To study the stability of the uniform state we linearize

Eqs. (1) about the uniform solution. To linear order in

the deviations (1(n) -xJ(n) x(n—), Eqs. (1) are

g 1(n + 1 ) =f'(x0(n) )[(1 —
y~

—y2) g~ (n)

+y~gt ~( )n+y g2, (+( )n]. (4)

First we consider periodic boundary conditions (J(n)
=(J+tv(n) The. n for large n the solution of Eqs. (4) can
be written as
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at any point ignored the boundary eA'ects. In a system
with periodic boundary conditions even convective insta-
bility will eventually lead to a destruction of the uniform
state because a moving growing perturbation will always
return to the origin. However, for open boundary condi-
tions convective instability will not destroy the uniform
state, as is shown below.

In the open boundary conditions, Eqs. (I) hold for all j
except for j=1 and A' where the terms proportional to y]
and y2, respectively, are absent:

x i (n + I ) = ( I —y2)f (x i (n) )+ yzf (x 2(n) ),
xn(n+ I) =(I —yi)f(x~(n))+ yif(xg i(n)) . —

The same holds for the linearized equations, Eqs. (4).
The uniform solution, Eq. (2), still exists and is unstable
to uniform fiuctuations, the eigenvalue of which is again
po & 1. However, the remaining N —

1 nonuniform eigen-
modes of Eqs. (5) change. They are given by

g, (n) =p"(k )e"cos(k j+v ),
where k =rrm/N, m =1,2, . . . , N —I, 28 =In(yi/y2),
and tan(vi ) = [I —(yi/y2) ' cos(k )]/sin(k ). The ei-
genvalue spectrum of these modes is

p(k) =pa[1 —
yi

—y2+2(yi y2) '"cosk] .

For yI &y2 this spectrum possesses a gap at k =0, since
p(k 0) 1t, (kp), of Eq. (7), which is less than the
m=0 eigenvalue po. In particular in the convective re-

gime, i.e., for yi and y2 such that k(ko) ( I, all the N —I

nonuniform fluctuations are stable. The only instability
which is left is the instability to uniform fluctuations
which is inherent in the chaotic nature of the system.
This instability, however, will not destroy the spatial
coherence of the system.

The above predictions have been confirmed in numeri-
cal simulations of Eqs. (I) with open boundary condi-
tions. We have used the logistic map f(x) =e xwith-
e=1.67 which is in the chaotic regime p0=1.26. Figure
1 shows the temporal evolution of the system starting
from randomly nonuniform initial conditions. The cou-
pling constants are y~ =0 7 and y2 =0.1 for which
A. (ko) & I. As is demonstrated in the figure, the left edge
is a source of a synchronizing front that propagates with

a finite velocity and leaves behind it a completely syn-
chronized regime. The velocity of the front equals y~

—
y~

(see, e.g. , [12]). Thus, the basin of attraction of the uni-
form state is big, and probably covers most of the space
of initial conditions.

Figure 1 shows that the synchronizing front does not

propagate throughout the system. In the suSciently long
lattice it stops before reaching the right edge, creating a
domain of synchronized state with a finite coherence
length, l, . This phenomenon is the result of the numeri-
cal noise. Indeed, it is found numerically that I, increases
with the numerical precision, as demonstrated in Fig. 2.
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FIG. I. Iterations of Eqs. (I) with f(x) =1.67 —x2, yi =p.7,
y2=0. 1, and N =100, starting from 10, randomly chosen initial
conditions. We show the results after n=1000. The results re-
veal a coherent domain of length I, = 55. The coherence length
was defined from the condition maxi &;& i~ x~+i ln) x;(—n)

~

~10 '.

The sensitivity to the numerical noise indicates that the
synchronized state is unstable to dynamic local noise. It
is indeed expected that a weak noise will result in a finite

coherence length. The reason is that each of the chaotic
maps responds strongly to the perturbation of the noise.

Maps near the left edge remain strongly synchronized
with the map at the edge since the "synchronizing force"
from the left maps is stronger than the noise. However,
as we move along the chain the desynchronization caused

by the noise increases and is completely destroyed at l, .
As will be calculated below, in the case of weak noise,

I, a: lno, where o denotes the amplitude of the noise. On
the other hand, the width of the domain wall separating
the synchronized and the completely unsynchronized
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FIG. 2. The dependence of l, on y2. All other parameters
are the same as for Fig. 1. The data points represent estimates
of I, based on the results of numerical simulations of Eqs. (I),
with y2 varying between 0.01 and 0.15. The upper part corre-
sponds to simulations with a quadratic precision (32 digits after
decimal point), and the lower to double precision (l6 digits).
Solid lines represent the best fit by Eq. (15) with cr0=1 —k(ko)
and n. a fitting parameter.
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parts of the lattice is rather sharp. It is of order a few

lat tice constants.
To estimate the effect of a weak noise, we add to the

right-hand side (RHS) of Eqs. (I) terms ri~ (n. ) represent-

ing a white uniformly distributed noise with a width o.
Assuming o«1 we evaluate the perturbation of the uni-

form state, Eq. (2), in the linear regime, using Eqs. (4)
with the noise t)J.(n) added to its RHS. The coherence is

defined as the minimal length I for which (gt (n ee))
= l. Solving Eqs. (4) with the added noise we find

Z(m1, m2)
(&J2(n —~))=o' g g tit, (j)tit, (j')

ml I m2 1 1 pmlpm

(10)
where

Here t)t (j) are the right eigenmodes of the linear op-

erator defined by Eqs. (4), i.e., lttj. =exp(bj)cos(k j
+p„,)/J2N [see Eqs. (8)] and yt (j) are their conjugate
left eigenmodes. In the limit of small o., j can be as-
sumed to be large, and the sums of Eqs. (10) can be ap-

proximated as

t k, i 2kj

((i~(n ee)) = o e Re dkk, (12)
1
—p (k)

where k, is a cutoff of order l. In the limit of large j this

integral is dominated by the pole in the complex plane,
i.e., k =itc, tc) 0, where p(itc) = I yielding

z(m1, m2) g tit, (j)y, (j) .
j~l

((2(n ~ ee)) CX O2e 2J(8+v)

Using Eq. (9) and the definition of b we obtain

(i 3)

&+
I —pp(1 —

yi
—r2) —([1 —pp(1 —ri —r2)] ' 4yi—r2pp) '"

2y2 po
(14)

Finally, equating Eq. (13) to 1 yields

ln(o/ap) (Is)

The constant op is roughly equal to I/~In[1 —p(k 0)]~.
Near the critical point it diverges, causing the vanishing
of I, . The dependence of l„on Incr is caused by the spa-
tial amplification of the small perturbations due to the
convective instability. The effect of noise on spatial
coherence has also been discussed in [3,5].

The analytical result for I, agrees well with the numer-

ical simulations, as shown in Fig. 2. In the present case I,
drops to zero at y2=0. 138 where p(k 0) =it. (kp) 1.
Note, however, that the vanishing of I, is relatively sharp
in agreement with the predicted logarithmic singularity.

In conclusion, we have shown that a CM L with

sufficiently asymmetric short-range couplings and open
boundary conditions can have a stable spatially uniform
but temporally chaotic state. The signature of this state
is a big gap, near k =0, in the spectrum of Lyapunov ex-
ponents of the linear operator characterizing the evolu-

tion of the Auctuations. These results extend those previ-

ously obtained for the purely unidirectional chain y2=0
[7]. This is a simple case in that a localized perturbation
propagates with a finite velocity to the right and does not
affect at all the maps behind it. In the present case where

y2&0 the perturbation also diffuses backwards. Never-
theless, we have shown here that if the perturbing front
propagates sufficiently fast its tail in the backward direc-
tion is exponentially small and may not be able to desta-
bilize the maps despite their exponential sensitivity to
perturbations.

It is straightforward to generalize our results to CML
in higher dimensions. An interesting question is whether,
in general, either the asymmetry in the interactions or the

I
open boundary conditions are necessary prerequisites for
the emergence of long-range-ordered chaotic states. We
believe that this phenomenon may exist also in systems
with symmetric interactions, since the underlying dynam-
ical state can spontaneously break the symmetry and give
rise to convective instabilities. Furthermore, it is not in-

conceivable that in such cases the long-range spatial or-
der may be stable even with periodic boundary condi-
tions. This will happen if the propagating perturbation
fronts and those reflected from the boundaries will an-
nihilate each other, leaving intact the spatial order. A
similar mechanism of stabilizing spiral states was recently
shown for the complex Ginzburg-Landau model [13].
These questions are under current investigation.
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