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We examine quantum chaotic scattering in the semiclassical regime for the two cases where the classi-
cal scattering is hyperbolic and nonhyperbolic. It is shown that in the nonhyperbolic case the energy-
dependent S-matrix autocorrelation function C(¢) exhibits a cusp-shaped peak at =0 (where ¢ denotes
the energy difference). This indicates that the fine scale fluctuations with energy of the S matrix are
characteristically greatly enhanced in the nonhyperbolic case as compared with the hyperbolic case.

PACS numbers: 05.45.+b, 03.80.+r, 11.20.—e, 42.50.Lc

Chaotic scattering has been found in a large variety of
classical physical systems [1-3]. The dynamics in such
cases may be characterized as either hyperbolic or
nonhyperbolic. In hyperbolic chaotic scattering, all the
periodic orbits are unstable and there are no Kolmog-
orov-Arnold-Moser (KAM) surfaces in the scattering re-
gion. In this case, the survival probability of a particle in
the scattering region typically decays exponentially [1,2]
with time P(E,t) —exp(— yt), where ¢ denotes time and
E denotes energy. On the other hand, in nonhyperbolic
chaotic scattering, there are both KAM surfaces and
chaotic regions in the phase space [3]. A particle initial-
ized in the chaotic region can spend a long time in the vi-
cinity of KAM surfaces. In this case, current evidence
indicates that the survival probability of a particle decays
roughly algebraically [4] with time P(E,t)~t "% for
large t. Recently, studies on quantum manifestations of
hyperbolic chaotic scattering [5] show that the elements
Si;(E) of the quantum scattering matrix (S matrix) ex-
hibit fluctuations in their dependence on the energy [5].
In this Letter we consider both hyperbolic and nonhyper-
bolic chaotic scattering and show that the fine scale semi-
classical quantum fluctuations of the S matrix with ener-
gy are characteristically greatly enhanced in the nonhy-
perbolic case as compared with the hyperbolic case.

The energy autocorrelation function of an S-matrix
element is defined as C;;(e) =(S;}(E)S;;(E +¢))g, where
€ is the energy difference (small) and ()¢ denotes an
average over a band of energies centered at some value
E=FEqy and of width AE, where AE is classically small
(AE/Eo<1) but “quantum mechanically large” (AE
>¢). More specifically, we define the average by
(- )e=WU/AE)[ - - - fUE —E()/AE)dE, where in our
numerical work we take f(x)=(1 —|x/v6|)/v6 for |x|
<6 and f(x) =0 for |x| = 6.

To evaluate C;;(e), we use the semiclassical approxi-
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mation in which the S-matrix elements are given by [6]
S (E)=X [P (E)]2exp %dﬂ‘)(E)——lev(” ,
s

(1)

where (s) denotes a classical path, Pj(i).,-(E ) is the classi-
cal transition probability from state j to state i along the
path s, ®’(E) is the classical (reduced) action along the
path (s), and v is the Maslov index. The sum is over
all the classical paths connecting state j and state i. The
classical transition probability is given by [6] P/, (E)
=(1/27)|91;/86;|;"", where (1;,6;) and (/;,6;) are the
action-angle variables in the states j and i, respectively.
For chaotic scattering, the number of classical paths con-
necting j and i increases exponentially with the length of
the path. Hence, the sum in Eq. (1) is difficult to evalu-
ate. Nonetheless, Eq. (1) is useful for the heuristic es-
timation of average quantities [5].

Substituting Eq. (1) into the definition of C;;(g), ap-
proximating ®°(E +¢) as ®*(E) +£9®°/dE, and neglect-
ing the contribution from cross terms in the double sum
over the classical paths, we get [5]

(@ ~ [ di Py (E ) expliet/h), @

where ¢ is the delay time of the particle in the scattering
region. In Eq. (2), P;;(E,t)dt is the classical probability
that a j— i transition occurs while the delay time is in
the interval [¢,r+dt]. For hyperbolic chaotic scattering,
Pij(E,t)~P(E,1) ~exp(—yt). Substituting this ex-
ponential law into Eq. (2), we obtain [5]

Ce)~1/(e/h+iy), 3)

which is Lorentzian. For small ¢ we have |C(g)|,— ¢
=~ const+0(g?). For nonhyperbolic chaotic scattering,
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P(E,t)~1t 77 for large t. Substituting this algebraic law
into Eq. (2), we can evaluate the integral asymptotically
for small &. We obtain

C(e)=Co+Ci(e/h)* ", 4)

where C(e)=|C;;(e)], Co=C(0), and C, is a negative
constant.

From Eq. (4), we observe that dC(g)/de~ (e/h)* 2.
So in typical cases where 1 <z <2 (z = 1.45 in Karney’s
numerical experiment [4], z=1.34 in Chirikov and
Shepelyansky’s numerical experiment [4], z <1.96 in a
theory based on a Markov-Tree model by Meiss and Ott
[4]), we have dC(e)/de|, . o— oo. Hence, the energy au-
tocorrelation function exhibits a cusp near £=0. That is,
C(¢) decreases very rapidly from £=0.

The above argument for the existence of Lorentzian
behavior of C(g) in hyperbolic chaotic scattering and the
cusp behavior of C(g) in nonhyperbolic chaotic scattering
is nonrigorous since it involves the long time limit of the
semiclassical approximation [7]. Thus we have undertak-
en a series of numerical experiments to test Egs. (3) and
(4). We consider a system in which particles are scat-
tered from a two-dimensional array of nonoverlapping,
elastic scatterers in the plane [2]. These scatterers are
placed at constant intervals D along the y axis and each
scatterer is represented by a circular attractive potential
V(r) that becomes negligibly small for r> R, where
R < D/2. Classically, the effect of an individual scatterer
on a scattering particle can be characterized by the elas-
tic deflection angle ©(/) as a function of the angular
momentum /. Note that ©(/) vanishes for / > [ max =uR
(mass of the particle=1) due to the finite range of the
potential, where u is the particle velocity in the region
where the potential is negligible. For V(r) we choose
the Woods-Saxon potential [8] V(r)=—Vo/(1+expl(r
— Ry)/al), where V>0 and Ro and a are constants.
We choose the angular momentum / and angle B as the
dynamical variables [2], where B is the angle of a particle
trajectory relative to the —y axis when the particle is in
regions where the potential is negligible. We define a
mapping that relates (/,8) with respect to a scatterer to
(I',B') with respect to the next scatterer after the
particle’s being scattered from the first scatterer. The
mapping can be explicitly expressed as [2] g'=8+6(/)
mod(2x) and /'=[—(Du)sgn(cosp)sinf’, if |I'l =< Imax
and, if |I'] > I nax, the particle exits the system.

We fix Vo=10, Ro=1, a=0.1, and D=4. Thus,
V(r=D/2)/V¢~10 "3 so in practice the adjacent poten-
tials do not overlap each other. When the particle energy
is large, we observe that the phase space consists of KAM
islands and chaotic regions, as shown in Fig. 1(a) for
E =10 (the chaotic invariant set is numerically obtained
by the “sprinkler” method [9]1). In this case, the scatter-
ing is nonhyperbolic and the decay of particles from the
scattering region is well fitted by an algebraic dependence
over the time range tested with a decay exponent of
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FIG. 1. Nonhyperbolic chaotic scattering for £=10: (a)

chaotic invariant sets and KAM islands and (b) logioN (1) vs
logwt.

z==1.62, as shown in Fig. 1(b). To calculate the decay
curve in Fig. 1(b), we initialize a large number of parti-
cles uniformly distributed in the region (/ € [4.5,6.5],
B € 10,2x]) which apparently does not contain KAM is-
lands and record the number of particles N(¢) that have
not escaped the scattering region at time . As the parti-
cle energy decreases from E =10 to E=E i (1 <Ei
< 10), the KAM surfaces are destroyed. At lower values
of E, we find numerically that there are no KAM sur-
faces and the decay of particles from the scattering re-
gion is exponential. In this case, the scattering is hyper-
bolic, as shown in Fig. 2(a) (the chaotic invariant set)
and the semilogarithmic plot in Fig. 2(b) (exponential
decay) for the case of E =1.

Quantum mechanically, the effect of any single scatter-
er is completely specified once the phase shifts o,(E) are
given [5]. Because of the discrete translational symmetry
of the system in the y direction, the wave function
satisfies v (x,y) =expliay)e®@(x,y), where ¢ @ (x,y)
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FIG. 2. Hyperbolic chaotic scattering for E=1: (a) the
chaotic invariant set and (b) the exponential decay.

is D periodic in y. So we have y@(x,y+nD)
=exp(inaD)y®(x,y). Thus the y component of the
momentum g, is quantized g, =a+2nx/D. Since by the
conservation of energy g2 < k2, where k is the wave vec-
tor for the energy [E =(h?%/2m)k?], there exists a max-
imum integer Ng (maximum number of open channels)
above which g, is not allowed and corresponds to evanes-
cent waves. To calculate the quantum S matrix, we make
use of the Koringa-Kohn-Rostoker method [10] adapted
to the present problem [5].

To compare the quantum calculation with the semiclas-
sical prediction of Eqgs. (3) and (4), we must use suffi-
ciently small values of Planck’s constant f, so that there
are a large number of waves on the scale of the system
length D. In the following, we shall compute results for
a nonhyperbolic case, with nominal energy E¢=10, and a
hyperbolic case with nominal energy Eo=1. For E¢=10,
we choose £ 2/2m =10 "3 so that the corresponding wave
vector is ko=100 and there are 127 open channels
(128 > 2D/A > 127). In the case of hyperbolic scattering
where Eg=1, we choose A2/2m=10"* (hence, we also

1.00 4» : 1 !

0.25

e/E
FIG. 3. Magnitude squared of S-matrix autocorrelation
functions [diamonds for the nonhyperbolic case (Eo=10) and
triangles for the hyperbolic case (Eo=1)] and the correspond-
ing semiclassical predictions (the thick solid curves).

have k¢o=100) so the number of open channels (127) is
the same as that in our nonhyperbolic scattering case.
We then calculate the autocorrelation function C(¢g) us-
ing AE/Eg=0.1. As a function of energy, an S-matrix
element contains both a smooth part and a fluctuating
part. To compare with the semiclassical theory, we sub-
tract the smooth part and only keep the fluctuating part.
Figure 3 shows the magnitude squared of the quantum
autocorrelation functions |C(g)|? for both the Eo=10
case (nonhyperbolic, plotted as diamonds) and the Eo=1
case (hyperbolic, plotted as triangles). For Fig. 3, we
also perform an average with respect to a small block of
matrix elements around a combination i and j (i =14,
j=25). We observe that the C(g) curves thus obtained
are essentially independent of i and j. Also shown in Fig.
3 are the semiclassical predictions from Eq. (2); the lower
thick solid curve corresponds to Eo=10, and the upper
thick solid curve corresponds to Eo=1. To calculate the
semiclassical correlation functions, we use the classical
decay data of Figs. 1(b) and 2(b) and substitute them
directly into Eq. (2). From Fig. 3, we see that for the
hyperbolic case, at small ¢ the energy autocorrelation
function deviates somewhat from the semiclassical
Lorentzian prediction. This deviation may result from
the failure of the assumptions used in deriving Eq. (2)
from the semiclassical expression Eq. (1) for our finite A
numerical calculation or from the failure of the validity
of the long time limit of the semiclassical theory itself.
For the nonhyperbolic case, Fig. 3 suggests that the quan-
tum calculation agrees reasonably well with the semiclas-
sical theory at small ¢, and the energy autocorrelation
function appears to follow the predicted cusp [11] near
£=0. Even though the hyperbolic C(¢) function deviates
from the predicted Lorentzian, its magnitude is still
higher than that of the nonhyperbolic case. This means
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that as compared with the hyperbolic scattering case, the
fine scale fluctuations of S-matrix elements with energy
are greatly enhanced in the nonhyperbolic case [12].

In conclusion, we have presented evidence that, in the
semiclassical regime, the quantum energy autocorrelation
function decreases more rapidly away from £=0 in the
case of nonhyperbolic chaotic scattering. Thus the fine
energy scale fluctuations of S-matrix elements are
characteristically greatly enhanced in nonhyperbolic
chaotic scattering as compared with the case of hyper-
bolic chaotic scattering.
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