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Real-Space Quantum Renormalization Groups
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Although originally thought to show great promise in solving quantum many-body problems on a lat-
tice, numerical real-space renormalization-group techniques have had little success for such problems.
We explore the nature of the difficulties involved by studying the application of the method to the simple
tight-binding model in one dimension. The standard approach fails dramatically for this model. We
show that the key to successfully applying the renormalization-group technique lies in applying a variety
of boundary conditions to a block in order to simulate the effect of neighboring blocks.

PACS numbers: 05.30.Fk, 05.70.Fh, 71.10.+x

Shortly after Wilson's dramatic success in solving the
Kondo problem with a numerical renormalization-group
(RG) method [1], there was considerable excitement
about the possibility of applying the same type of ap-
proach in a real-space form to a variety of difficult quan-
tum lattice problems. These real-space RG techniques
quickly developed a bad reputation, however, after sev-
eral different applications of the methods gave poor re-
sults. For example, Lee [2] applied a real-space RG
technique to the problem of Anderson localization on a
two-dimensional square lattice. The major conclusion of
this study, that there was a critical parameter that
separated scaling towards extended or localized states,
later was shown by Lee and Fisher [3] to be incorrect.
RG studies of other systems, such as the one-dimensional
(ID) Hubbard model [4], also gave poor results, and to-
day the technique is little used. It has not been very well
understood why the method fails.

In this Letter [5] we examine real-space RG methods
for an extremely simple model, a 1D tight-binding lattice.
The importance of understanding real-space RG in the
context of this model was pointed out by Wilson several
years ago in an informal, unpublished talk. The standard
RG approach fails spectacularly in this model, and it is
quite easy to see why. Here, in addition to showing why
it fails, we provide several closely related variations of the
standard approach which perform extremely well. Al-
though the calculations reported here are for this very
simple model, we believe the problem is generic and the
general type of solution we give can be applied to virtual-

ly any quantum lattice model.
We consider a ID chain of sites i with the single-
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Initially, the block size is 1 and H' and T' are 1 x1 ma-
trices equal to 2 and —1, respectively. VVe start iteration
s by forming the Hamiltonian matrix for a block com-
posed of two blocks from the previous iteration

This problem is equivalent in the continuum limit to a 1D
partide in a box.

The standard real-space RG approach consists of con-
sidering a group of sites to be a "block," and diagonaliz-

ing that block to find a set of eigenstates. One then trun-
cates the set of eigenstates, keeping only the lowest m
states (ordered by energy), and uses those states to con-
struct an approximate Hamiltonian for a new, larger
block composed of two of the old blocks. At each itera-
tion s we can ~rite the Hamiltonian of the infinite chain
as a block tridiagonal matrix in terms of diagonal blocks
H' and off-diagonal blocks T',

r
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We diagonalize H' and take the lowest m eigenvalues
Ej' and eigenstates Vj, 1=1, . . . , m, discarding the rest.
We then perform a change of basis to the eigenstates via

Hj'j =g Vf;H,'J. Vfj (5)

and

Tjl' =z VI'I T J Vf'j

Note that Eq. (5) puts H' into diagonal form. We then
proceed to the next iteration, starting with Eqs. (3) and
(4). The idea is that the higher-energy states which are
discarded at the current iteration are unimportant in

making up the low-energy states at a later iteration. The
accuracy can be increased by keeping more states, i.e., in-

creasing m.
It is easy to see in this simple example, however, that

this procedure is quite poor in describing large-scale,
low-energy behavior. The Hamiltonian in this example is

just a finite-difference discretization of the kinetic energy
of a 1D particle, and in the limit of large block size, the
eigenstates are just particle-in-a-box eigenstates. The
boundary condition of ignoring the connections T to
neighboring blocks corresponds to setting the wave func-
tion to 0 at the sites just outside the block. Figure 1 illus-
trates the difficulty. Any state made only of low-lying
states from the previous iteration must have a "kink '

in

the middle. In order to accurately represent states in the
larger block, one must make use of nearly all the states in

the smaller block: Any truncation leads to large errors.
Wilson suggested one possible way to cure this prob-

lem. He suggested integrating out the higher-energy
states via a unitary transformation, taking into account
the interactions with other blocks perturbatively rather
than ignoring them. (This approach is closely related to
degenerate perturbation theory. ) Ingersent and White
[6] recently tried a variety of ways of implementing this,
but were unable to find a satisfactory approach. We now
believe that the set of low-lying states kept in the stan-
dard approach is too incomplete for the perturbative uni-

tary transformation to help.
The key to fixing this simple example lies in the treat-

ment of boundary conditions (BCs). However, simply
choosing an alternative set of BCs is not adequate. The
standard approach uses BCs in which the eigenstates van-
ish (in the large block limit) at the edges of a block. We
call this type of BCs "fixed." Because fixed BCs must be
used on the inside edges whenever two blocks are to be
joined, fixed BCs are the most natural kind to use. How-

FIG. I. Lowest eigenstates of two 8-site blocks (solid circles)
and a l6-site block (open squares) for the one-dimensional

tight-binding model with fixed boundary conditions.

ever, the RG procedure can be modified to use other
kinds of BCs. The alternative BCs would be used in

forming the matrix that is diagonalized in order to deter-
mine the eigenfunctions V to be kept, but fixed BCs must

still be used on the inner edges in forming larger blocks.
Although H' in Eq. (5) is no longer diagonal, the pro-

cedure is still well defined in the sense that it is exact
when all states are kept at each iteration.

One finds, however, that applying the RG procedure
with BCs other than fixed does not eliminate the dif-

ficulties. For example, using periodic BCs results in the

low-lying eigenstates being identical at the two edges,
which prevents the accurate representation of anything
but the ground state (which for periodic BCs is a con-

stant function) on larger blocks. "Free" boundary condi-
tions (obtained by changing H;; from 2 to 1 on the edges)
result in the slope of the eigenstate vanishing at the

edges, and again excited states on larger blocks cannot be
represented.

In order to obtain a working approach, we must com-
bine eigenstates obtained from different boundary condi-

tions. The block must be diagonalized several times, with

different boundary conditions each time. We then extract
a few low-lying eigenstates from each diagonalization, or-

thogonalize them, and keep this set of states for the next

iteration. To be more specific, the following "fixed-free"
procedure solves the simple problem almost exactly for
fixed boundary conditions, in the sense that a finite num-

ber of the lowest energies of large blocks is obtained al-

most exactly even after many iterations, keeping only a
few states at each iteration. This method uses the four

possible combinations of free and fixed BCs at the two

edges of each block. We keep track of four 0 matrices at
each iteration, Hb b, ~here b represents the left edge and

takes on the values free or fixed, and b' similarly repre-

sents the right edge. For example, for an initial two-site

block one would have
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We diagonalize H'f s d and extract the lowest m/4
eigenstates. Similarly, we extract the lowest m/4 eigen-
states for Hfree. free~ Hfixed, free~ and Hgxed, rrxed. This set of
m states is not orthogonal, so we next orthonormalize
them. This set of states forms the new basis, taking the
place of the Vj, I=i, . . . , m. (The orthogonal comple-
ment to these states are the states that are discarded. )
We next perform a change of basis on the matrices T'
and Hb b, as in Eq. (6). Finally, for the next iteration,
we replace Eq. (3) by

Hb, b'

Ts

(Ts—j)t Hs —j

Note the use of fixed BCs for the inner edges when join-
ing two blocks together.

Table I compares the results of this procedure with the
standard one. The eigenvalues of 0's ds d are shown for
the new procedure. A total of eight states (m =8) were

kept for both procedures. Whereas the results from the
standard procedure bear little relationship to the exact re-
sults, we find that the new procedure yields energies for
the first four states even after ten (or more) iterations ac-
curate to nine digits with 64-bit precision.

The lesson to be learned from this example is that the
influence of the surrounding blocks not taken into ac-
count in the current iteration is to effectively apply a
variety of boundary conditions to the current block.
Hence, any approach using one set of boundary condi-
tions on a block generates a set of states which is in some
sense "incomplete, " and it is very difficult to correct this
incompleteness by keeping many states or by applying
perturbative corrections.

Higher-energy states can also be found using the
fixed-free method. In particular, if we are interested in

states near a particular energy, we keep the m states at
each iteration that is closest to that energy. Table II
compares results for states at the center of the band using
the fixed-free method with exact results and keeping fixed
BCs only. We keep sixteen states at each iteration. The
fixed-free results are accurate to nine digits, while the
fixed BC results are quite inaccurate. This shows the
general principle of keeping states from a variety of

boundary conditions is also important for higher-energy
states for which the wave function is rapidly varying in

space.
The fact that the fixed-free method performs so well is

not an accident specific to this problem or this choice of
BCs. Accurate results are also obtained using the corn-

bination of periodic and antiperiodic BCs. For periodic
or antiperiodic BCs, the matrix elements at the corners of
the blocked Hamiltonian matrix are affected by the
boundary conditions. In order to perform the real-space
blocking transformation, one has to keep track of two ad-
ditional off-diagonal matrices, T'p and TAp, for periodic
and antiperiodic BCs, in addition to T . One diagonalizes
the blocked Hamiltonian

Hb

Tb (lo)

and then transformed to the new basis as in Eq. (6).
Here the positive sign is for periodic BCs and the nega-
tive sign for antiperiodic BCs. Table III compares the
energies of the lowest four eigenstates using this method
for periodic BCs with the exact results and with renor-
malization-group results for which only periodic bound-

ary conditions are kept. The results are calculated after
ten iterations of the renormalization group, keeping eight
states at each iteration.

A third approach to varying the BCs involves putting
extra blocks around the block of interest. One diagonal-
izes a larger system containing p blocks (a "superblock"),
where p& 2, but with only one type of BC (typically
periodic). Two of these blocks will form a larger block
for the next iteration. The idea is that the surrounding
blocks apply a variety of BCs to the block of interest. We

for both periodic (b =P) and antiperiodic (b AP)
boundary conditions, keeps m/2 states from each BC, and
orthonormalizes the resulting states. This set of states is

then used to transform H' and T', formed using Eqs. (3)
and (4), to the new basis.

The new off-diagonal matrices can be formed from the
T' ' using

r +(T' ')t

TABLE I. Lowest energies after ten blocking transforma-
tions for the noninteracting single particle on a 1D chain with
fixed boundary conditions.

TABLE II. Energies in the center of the band after ten
blocking transformations for the noninteracting single particle
on a lD chain with fixed boundary conditions. Energies are
measured relative to the band center.

Eo
Ei
E2
E3

Exact

2.3508x 10 '
9.4032 x 10
2. 1157x ]0
3.7613x 10

Standard

1.9207 x 10
1.92Q9 x ]Q
1.9214x 10
1.9217x ]0

Fixed free

2.3508 x 10
9.4032 x 10
2. 1157x 10
3.7613x 10

~Ei023
hE i024
/'j E i02s

~E i026

Exact

—4.5997x 10
—1.5332 x 10

1.5332 x 10
4.5997 x 10-'

Standard

—5.7054 x ]0
—4.0785 x 10

4.0785 x ]0-3
57054x]0 '

Fixed free

—4.5997x 10
—1.5332 x 10

1.5332 x 10
4.5997 x 10
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Exact Periodic only Periodic antiperiodic

TABLE III. Lowest energies after ten blocking transforma-
tions for the noninteracting single particle on a ID chain with

periodic boundary conditions.

TABLE I V. Average relative errors in the lowest three

excited-state energies after ten blocking transformations for

periodic boundary conditions using the superblock method with

p blocks.

Ep
E]
Es
E3

0.0
9.4124 x 10
3.7649 x 10
8.4711 x 10

0.0
2. 1281 x 10
5.3888 x 10
9.1936x 10

0.0
9.4161 x 10
3.7659 x 10
8.4732 x 10

3
4
5
6
20

Average error (%)

5

0.08
0.002
0.0005

10-'

extract Irt states from the diagonalization of the super-
block, then project out the portion of each wave function
corresponding to the two spatial blocks of interest. The
system size doubles at each iteration. For p =2, this pro-
cedure is equivalent to the conventional procedure for
periodic BCs (results for which are given in Table III,
column 2). As in the other methods, these projected
states must be orthogonalized before they can be used to
transform the Hamiltonian matrices.

The results for the superblock procedure are summa-
rized in Table IV for various values of p, after ten itera-
tions, keeping eight states at each iteration. The results
are reasonably accurate even for p =3, and become more
accurate for larger p. The p =20 results are accurate to
ten decimal places, suggesting that this procedure be-

comes exact in the large-p limit.
In devising a procedure such as the three we have de-

scribed here, it is important to make sure that the varia-
tion of the boundary conditions is sufficiently broad. For
example, if one uses the superblock method with an-

tiperiodic BCs, one finds that the ground state is not ac-
curately obtained, but that excited states are. This is be-

cause the states kept are missing any very-low-mo-

mentum component. However, if one adds one extra
state, the zero-momentum state V; =const, to the list of
states kept at each iteration, the method becomes even

more accurate than the periodic BC superblock method.
The next challenge is to discover how to apply the gen-

eral ideas discussed here to more difficult models, such as
the localization model studied by Lee [2], or interacting
models, such as the 1D Hubbard model. We believe the
most promising method of the three we have described
here is the superblock method, since one does not have to
choose what BCs to apply —in a sense, the system does it

for us. For interacting problems in particular, there may
be many-body states of the system where one particle has

a node in its wave function at the edge of a block and
another particle has an antinode at the same edge. For
this case, any combination of single-particle BCs, like
fixed and free, would probably not work. Of course, for
interacting problems, the superblock method is very
difficult for large p. One can envision hybrids of the su-
perblock method with other variations of the BCs, such as
the periodic-antiperiodic method, in order to keep the
number of extra blocks to a minimum.
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