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Statistical Theory of Coulomb Blockade Oscillations: Quantum Chaos in Quantum Dots
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We develop a statistical theory of the amplitude of Coulomb blockade oscillations in semiconductor
quantum dots based on the hypothesis that chaotic dynamics in the dot potential leads to behavior de-
scribed by random-matrix theory. Breaking time-reversal symmetry is predicted to cause an experimen-
tally observable change in the distribution of amplitudes. The theory is tested numerically and good
agreement is found.
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Recently it has become possible to fabricate nearly iso-
lated islands of two-dimensional electron gas on the sur-
face of high-mobility semiconductor heterostructures, and

probe their quasibound states by measuring tunneling
conductance across the "quantum dot" [1-3]. A typical
semiconductor dot is a few pm across, contains —100
electrons, and is expected to have an irregular shape due
to fluctuations in the electrostatic confinement potential.
The tunneling spectroscopy of these novel objects is done

by measuring conductance versus gate voltage (which
varies the electron density and hence the Fermi energy
sF). Varying BF also varies the equilibrium electron num-

ber, N, on the dot and so one probes successively not ex-
cited states of the dot for fixed N, but ground and low-

lying states of the dot for each N. Thus the spacing
hsF(N) between successive resonances is determined by
both the additional Coulomb repulsion energy for adding
an electron to the dot [taken to be simply (2N —1)e /2C,
where C is the capacitance of the dot] and the splitting of
the effective single-particle levels ajar due to confinement.
Within the conventional models [2,4] it follows that the
resonance spacing is hsF =stv —

stv ~+e /C. If, as in the
recent experiments [1,2], e /C»de =aN —

gatv-~, approxi-
mately equally spaced peaks are observed (once k T(e /C-4 K). Note that the tunneling is suppressed be-
tween resonances primarily by the charging energy, a
phenomenon known as "Coulomb blockade" (CB).

Although many aspects of this resonance phenomenon
are now understood theoretically [3-5], one of its most
striking features, order-of-magnitude fluctuations in the
amplitude of adjacent peaks [1,2] at low magnetic field,
has been given no explanation. In this Letter we propose
that these fluctuations arise from the chaotic nature of
the eigenstates of irregular quantum dots, and calculate
the statistical properties of the resonance amplitudes us-

ing random-matrix theory. We obtain a one-parameter
distribution of peak heights which can be directly com-
pared to histograms of the experimental resonance ampli-
tudes as has been done previously for the analogous
phenomenon of Porter-Thomas level-width fluctuations in

neutron scattering [6,7]. Interesting new features arise in

this system, however, due to thermal effects and the pos-
sibility of breaking the fundamental symmetries deter-
mining the statistics.

We focus on the regime in which kT (d,s (typically
hs-0. 5 K), so that only one single-particle level contrib-
utes to each resonance [4,5]. Ignoring correlation elfects
with the Fermi sea [8] one has at T=O the standard
Breit-Wigner line shape with a total width I jv =1/v+1 /'v

(where I t'v' are partial decay widths into left and right
leads). However, when kT» I tv (the typical case) the
thermal rounding of the Fermi function f(cF E,T)—
leads to a resonance function [4] g(sF —Etv, T) = —(e /

h)Atv f'(sF —Etv, T), where AN =I tvl t'v/tr(l t'v+I t'v) is the
area under the resonance. It follows that in this regime
all resonances have the same width -kT [1] but the am-

plitude depends on the T=O decay widths,

e I N~N e 1

h 4trkT(r' +rN) h 4trkT

where atv=trAtv/I is the amplitude normalized by the
mean resonance width. Hence the large observed ampli-
tude fluctuations imply that the decay widths fluctuate
substantially on the scale Aa

Such large, nonmonotonic variation cannot be due to
the barrier penetration factors which should be monoton-
ic in energy and slowly varying on scale Ae. Moreover,
recent experiments [9] show that a magnetic field B
-500 6 completely rearranges the amplitude pattern al-

though such a field is too weak to affect substantially the
tunneling rates. Thus the fluctuations must arise from

spatial variations in the amplitude of the quasibound
states inside the dot, and we will neglect randomness or
complexity in the tunnel barriers below. The occurrence
of fluctuations reminiscent of a random system is initially

surprising for these high-mobility GaAs systems, which

show ballistic behavior [2] at energies above the tunnel-

ing barriers. However, recent theoretical results [10]
show that chaotic scattering in such devices leads to con-
ductance fluctuations similar to those of highly disordered
metals, and more generally the study of quantum chaos
demonstrates that even modest complexity of shape,
exemplified, e.g. , by the stadium or Sinai billiards [11],
will lead to effectively random behavior described by

Wigner-Dyson statistics. We assume that such weak

shape fluctuations exist in the dot and calculate the sta-
tistical distribution of amplitudes atv, P (a), from
random-matrix theory [6,7].
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d

b Z I..I'-I,d p
(3)

where Od is the solid angle in d dimensions. If we define

rt„., =f0 dy p„(a,y)p„(y) then we have (suppressing the

First, I ~ and I ~ can be related to the bound states of
the isolated dot via R-matrix theory [12] adapted to the
quasi-ID case. We assume that the dot is coupled to
infinite uniform leads through identical tunnel barriers.
Outside the barriers we may expand the scattering wave
solutions y+(x,y) at energy E =eF in terms of products
of longitudinal plane waves with wave vector k„and
transverse wave functions p„with subband energy e„(ex-
cluding exponentially growing terms when e„)E). We
may also expand y+(x,y) =+PA&X&(x,y), where [Xj is

a complete set of eigenstates with energies eq for the finite

region of the dot plus tunnel barriers. Using current con-
servation a connection may be derived between [Xq] and

g(E), and in the "single-level approximation" [12] be-
tween a single Xq and the resonance near eq [13]. One
finds that the partial width for decay into the nth open
channel in the left lead (beginning at x =0) is

f'k
1&-(y&.,('- dy41, (y)Xg(0,y), (2)

2m 4o

where hk =42mE. A general treatment for M open
channels in each lead is straightforward, but since the
leads will typically narrow smoothly near the tunneling
barrier a single channel in each lead will have the shortest
tunneling distance and will dominate the resonance.

We can define a reduced width (yq„( =I q„/Pq„,
where Pq „=P(E —e, ) is the barrier penetration factor
which is a smooth function of energy. In this work we al-

ways take P(E) the same on left and right (hence
I '-I "=I /2; the case I 'el " will be treated elsewhere
[13]). In this case a of Eq. (I) only depends on yq„
which is sensitive to the nature of the quasibound state,
and has the same form as y~ „with the wave function in-
side the tunneling barrier Xz(a,y) replacing that outside
[13]. Although Eq. (2) is derived for single-electron po-
tential scattering, the approach can be generalized to
many-electron wave functions [12] and will lead to the
same statistical predictions for CB fluctuations even if re-
sidual interactions (beyond the charging energy) are im-

portant.
First we calculate the distribution P(l ) assuming that

the Hamiltonian of the isolated dot is described at 8=0
by the Gaussian orthogonal ensemble (GOE) and at B
large enough to break time-reversal (TR) symmetry by
the Gaussian unitary ensemble (GUE) [7]. This implies
that if we expand Xq(x,y) P„-~a„p„(x,y), where

p„(x,y) is an arbitrary basis, the coefficients [aJ should
be uniformly distributed in Hilbert space [7]. After trun-
cating the basis to a finite d-dimensional set (since the
GOE description fails at lengths less than kf ) this
means that the joint probability density is

index n), y=g„-~a„rt„=a. ri. It follows that

d
2

d

P( j)=„+da„b(y —a. ti) b g Ia„( —
I . (4)

p I Qd

Since the [pJ must be complete as d ~ we must have
g. g ~d; hence by choosing ballad we obtain

t d —l d —l

IIda, b Z Ia, l' —« y'/d—) -e

(5)
where we have taken the limit d))1. This calculation
was sketched for real y describing the GOE case of real
wave functions; the same reasoning holds for Re[y] and

Im[y] in the GUE case which thus have a joint Gaussian
distribution in each channel. For the case of M channels
per lead it is easily shown that the scaled total width I /I
has a g„distribution with v=2PM (P=I,2 for GOE,
GUE),

P„(l ) =A„l "t ' exp( —vt /21 ) (6)

where A„=(v/21 ) "t /Q(v/2) and Q(p) is the gamma
function. The case v =1 corresponds to the famous
Porter-Thomas distribution [6]; it only arises here if B=O
and the dot has reflection symmetry implying I"jv=l z.
In this case a= —,

' (I/I") and P~(a) g~(a) also has the
Porter-Thomas form. We note that P„(I ) is peaked at
small widths for v=1,2 but as v increases it peaks at a
value approaching I and its variance decreases. Using
Eqs. (I) and (6) we may express P„(a) as a one-di-
mensional integral [13] for all v. The most relevant cases
are v 2,4 which describe an asymmetric dot with a sin-

gle decay channel per lead at B=O, B~O, respectively.
One finds

P2(a) =(2/tra)' e
. l(2

P4(a) -2e 4' dz e~0 Z

(7)

(s)

P~, P2, P4 are plotted in Fig. I; note the substantial
suppression of small amplitudes caused by breaking TR
symmetry. All moments of P„can be calculated analyti-
cally [13] and some interesting results are predicted.
First, breaking TR symmetry reduces amplitude/luctua
tions: The variances satisfy h, ap= s =0.125, ha4= 4'&

=0.089. This follows simply from the decrease in the
variance of the underlying g distributions as v increases.
Second, breaking TR symmetry increases the mean am-
plitude: a2= 4, a4= 3 . Because it relates to a, this pre-
diction should hold even ~hen kT))h, e, i.e., for metallic
samples as well. The origin of this effect can be seen
qualitatively by expanding each partial width in a for
small variations around their mean which yields a
= 4 [I —A(l/I ) ]. Since A(I/I ) decreases when TR
symmetry is broken, a increases as long as the sym-
metry-breaking field B„has negligible effect on I [see in-
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FIG. i. Distribution P„(a) for the CB resonance amplitude
a for three cases: symmetric dot at B=O [v=1 (dotted)],
asymmetric dot at B=O [v 2 (dashed)l, and asymmetric dot
at BCO [v=4 (solid)]. Inset: Mesoscopic fluctuations of a/a vs

IIux 4 through dot for four consecutive peaks (in energy) for
desymmetrized stadium (inset Fig. 2).

set, Fig. 3(a)]. Since I «hs, B, shou. ld be determined
for closed chaotic billiards. A plausible extension [13] of
recent work on orbital magnetism in disordered systems
[14] suggests that B„L =@„—(h/e)/(ft vF/hcL) '

where L is a typical linear dimension of the billiard. The
same flux will scramble the amplitude pattern for a single
sample and this criterion predicts 8, -500 6, consistent
with experiment [9]. The numerical results of Figs. I and
3(b) (insets) are consistent with this conjecture for B„
but cannot confirm it, as the factor (hvF//)FL) ' —l.

To test the theory microscopically we have performed
numerical calculations of conductance resonances (Fig.
2) in a model system consisting of the stadium billiard
[I I] connected to leads [10] through tunnel barriers of
height 15si (si is the first subband threshold) and desym-
metrized by replacing one quarter-circle by a cosine curve
(inset, Fig. 2). Although matrix element statistics for
chaotic systems have been studied previously with results
consistent with Eq. (6) [15], we found no previous direct
tests of resonance statistics for chaotic systems. We stud-
ied g(E) at fixed B for energies between ei and 2@i so
that only the single-channel cases (v=2, 4) occur. From
Weyl's law [11] this interval should contain roughly the
24th to 49th level of the stadium.

Quantitative statistical analysis requires more than the
25 resonances given by the billiard of Fig. 2 (inset); since
in the experimental systems smooth potential fluctuations
on the scale of the dot are to be expected anyway, we
construct a weakly random ensemble of dots based on this
billiard. %'e add to the "floor" of the dot three randomly
located hills (or valleys) smoothly joined to the edges
with random height always less than the electron kinetic
energy and uniformly distributed in the interval [—ei,
+si]; strikingly, this small perturbation produces an un-
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E

FIG. 2. Conductance g/(e2/h) vs E =sF for desymmetrized
stadium (inset).

correlated resonance pattern. With this procedure we

generate resonances for thirty samples and fit the total
half-widths to Breit-Wigner line shapes. We find that
f (E) varies smoothly by roughly a factor of 2 over the in-

terval studied, and agreement to theory is significantly
improved if the resonances are rescaled by a linear AE)
instead of by a constant I [see inset, Fig. 3(a)]. The
fitting requires some care and details will be given else-
where [13]. In the histograms of Fig. 3 we compare the
distribution of total widths 1 (corresponding to T=O be-
havior) to the predictions of Eq. (6) [this is sufficient
since the distribution P„(a) follows analytically]; due to
finite energy resolution the correct population of the first
bin (small F) is not resolved and we need to compare the
data to truncated g distributions [13]. We find excellent
agreement for the case 8=0 and reasonable agreement
for B corresponding to flux &=2@0. The crossover scale
for TR symmetry breaking is quantified by fitting the dis-
tribution at intermediate fields [15] to v between 2 and 4
[inset, Fig. 3(b)]. Unfortunately no strong saturation at
v=4 (corresponding to GUE) is found; we have numeri-
cal evidence [13] that the continued B dependence of
P(I ) occurs because the cyclotron radius approaches the
dot radius and beyond this field scale B,dg, the chaotic
motion is suppressed by edge-state formation [3].
Roughly B„dsJB, -M!V, so unlike .our simulations in typi-
cal experimental systems with JN —10-25 there should
be a large field interval over which our current theory will

apply.
In summary, amplitude Auctuations of CB oscillations

in semiconductor quantum dots arise from quantum-
chaotic Auctuations in the decay widths of quasibound
states which have universal distribution laws describable
by random-matrix theory. A weak magnetic field en-
hances the mean amplitude while reducing Auctuations in

the amplitude.
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FIG. 3. Histograms of total widths 1(E) normalized by
BE) for (a) @-0and (b) 4/@0=2. Dotted curves are expect-
ed g2 distributions of Eq. (6) with (a) v 2, (b) v 4. Inset
(a): BE) obtained from numerical data and best linear fit for

0 (squares, dash) and A/@p=2 (crosses, solid). Only typi-
cal error bars are shown. Inset (b): Best v obtained by fitting
histograms obtained at several Aux values to a truncated g, dis-
tribution showing field scale for v=2 4 transition [15].
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