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Golden Mean Arithmetic in the Fractal Branching of DiH'usion-Limited Aggregates
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We use the wavelet transform microscope to explore the intricate fractal geometry of Witten and
Sander's diff'usion-limited aggregates. We report on the discovery of Fibonacci sequences in the internal
hierarchical structure of these clusters. We discuss the relevance of the golden mean arithmetic to the
numerically well established statistical self-similarity of these aggregates.

PACS numbers: 68.70.+w, 05.40.+j, 64.60.Cn

Fractal growth patterns are common phenomena to a
variety of physical, chemical, and biological systems that
are driven far from equilibrium by a diffusion field [I].
In this context, the diffusion-limited aggregation (DLA)
model introduced by Witten and Sander [2] in 1981 has

played a major role since it has stimulated considerable
experimental and numerical effort. In this prototype
model, an aggregate is grown by the successive accretion
of random walkers to the perimeter sites of the cluster.
On-lattice and off-lattice computer investigations [1-3]
have shown that complex, apparently randomly branched
fractals are produced. But despite the appealing simplici-

ty of the DLA model, analytical progress has been very
slow and many important theoretical questions remain
unanswered. Actually, after nearly ten years of extensive

inquiry, only a little is known about the ramified DLA
morphology and the understanding of DLA growth
remains a very exciting theoretical challenge.

Most of the activity in this field has been focused on

the geometrical properties of growing aggregates [1-3].
In the early numerical studies, on-lattice DLA clusters
were found to have different scaling properties in the ra-
dial and azimuthal directions, raising the question of
self-affinity (rather than self-similarity) for these fractal
structures [4]. Further large-scale simulations of off-
lattice clusters have shown that the existence of two
diA'erent scaling exponents is only a crossover eff'ect that
vanishes in the asymptotic limit of large mass [5]. The
statistical monofractality of the DLA clusters is now well

admitted and rather accurately established by the mea-

surement of the generalized fractal dimensions that all

coincide to the fractal dimension [6-8]: D~ DF =1.60
+0.02, Vq. Recently, the application of the wavelet

transform [7] (WT) has revealed that this statistical
self-similarity is intimately related to the existence of a
screening angle distribution (distribution of angles be-
tween branches of successive generations) that is scale in-

variant when exploring the internal inactive region where

growth has stopped [9]. This distribution displays a per-
ferential screening angle 8*=36' =z/5. The presence of
a pentagonal symmetry, at a macroscopic level, in dif-
fusion-limited aggregation has already been suggested in

previous works [10]. The existence of this symmetry at
all scales, however, is likely to be a clue to a structural
hierarchical ordering. The aim of the present Letter is
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FIG. l. (a) The inner frozen region of an off-lattice DLA

cluster of mass M=10; about Sx10 particles are contained in

a disk of radius R =480 particle sizes. (b) The azimuthal Can-

tor set defined by the intersection of the DLA cluster with a cir-

cle of radius R =480. (c) Box-counting (q) 0) and fixed-mass

(q (0) computation of the generalized fractal dimensions Dq of
the frozen region of the DLA cluster (5) and of the aximuthal

Cantor set (0).

to use the wavelet microscope to further inspect the
structural implications of this fivefold symmetry and to
show that Fibonacci sequences are hidden in the disor-

dered fractal DLA morphology.
For this work we have grown a total of 23 oA-lattice

DLA clusters with 10 particles each. For the generation
of these clusters we used an efficient algorithm which

combines the simplicity of the oA'-lattice algorithm de-

signed in Ref. [11] with the rapidity of on-lattice
hierarchical algorithms [12]. Simulation of large aggre-
gates is necessary as we will primarily concentrate on the
extinct region [13] of DLA clusters that can be con-

sidered as asymptotic in the sense that it will no longer be
modified by further growth. The investigation of scaling
properties requires this inner frozen structure to be large
enough to resolve several generations of branching. In

Fig. 1(a), we show the inner central region of a 10 parti-
cle off-lattice cluster; about 8x10 particles (correspond-

ing to inaccessible perimeter sites for the random walk-

ers) are contained in a disk of radius R =480 particle
sizes. In Fig. 1(c) are reported the results of box-

counting and fixed-mass fractal dimension measurements

[6,7]. The generalized fractal dimensions are found to be

equal to the fractal dimension: D =D " =1.60+ 0.02,
Vq. Note that this numerical value is the same, up to the
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computational uncertainty, as for the entire aggregate;
this is consistent with the recent numerical demonstration
that the subset of inaccessible sites is a fat fractal that in-
volves a finite proportion —37% of the total perimeter
sites [14]. In Fig. 1(c) are also reported the results of a
similar analysis performed on the azimuthal Cantor set
defined by the intersection of the DLA cluster with the
circle of radius R that delimits the extinct region. This
azimuthal Cantor set [Fig. 1(b)] is also self-similar with
a fractal dimension DF"=0.60~0.02. The observation
that DF =DF""—I is in good agreement with Mandel-
brot's argumentation [15] concerning one-dimensional
cuts of homogeneous fractals embedded in a two-
dimensional space.

As a first step of our demonstration, we will focus our
wavelet analysis on the azimuthal Cantor set illustrated
in Fig. 1(b). The WT of a measure p with respect to the
wavelet g is defined as [16]

r

Tg[p](a b) g dp(x), a&0, b C IR, (1)4 a

where the analyzing wavelet g is generally a regular
complex-valued function that is localized around zero and
possesses some vanishing moments. A family of common-
ly used analyzing wavelets is the set of successive deriva-
tives of the Gaussian function. As pointed out in previous
works [7,16], the WT can be seen as a mathematical mi-
croscope whose position and magnification are b and a
respectively, and whose optics are given by the choice of
the analyzing wavelet g. This microscope has proven to
be well suited for studying local scaling properties of
fractal objects [7,16,17]. Here, however, we will exploit
its fascinating ability to reveal the structural hierarchy
from which these scaling properties originate. As recent-
ly addressed in various theoretical studies [17,18], the
wavelet analysis of singular measures does not require the
analyzing wavelet g to be of zero mean. In the present
study, we will use a Gaussian function g(x) =e

For a pedagogical purpose, we first show in Fig. 2(a)
the WT representation in the (x,a) half plane of the uni-
form triadic Cantor set [16]. Indeed, we present only the
skeleton defined by the positions of the local maxima
[19,20] of )Ts(a, x)( considered as a function of x. (We
refer the reader to Refs. [17] and [19] for a mathematical
introduction to the WT modulus maxima representation. )
Although we have reduced considerably the amount of
data for the representation, the so-obtained treelike struc-
ture reveals the construction rule of the self-similar triad-
ic Cantor set [16,17]. At the scale a =a03 ", each one of
the k02" modulus maxima simultaneously bifurcates into
two new maxima giving rise to a cascade of symmetric
pitchfork branchings in the limit a 0 (ao and ku are
constants that depend on the specific shape of g). The
fractal dimension DF=ln2/ln3 of the uniform triadic
Cantor set can be directly obtained from the branching
ratio rg =2 and the scale factor (length ratio) ri =3 be-
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FIG. 2. WT skeleton defined from the local maxima of
~ Tg(a, x}l considered as a function of x. (a} The uniform triad-
ic Cantor set. (b) The azimuthal Cantor set shown in Fig. 1(b).
(c} and (d} are enlargements of the WT skeleton in (b} corre-
sponding to two distinct main branches of the off-lattice DLA
cluster in Fig. 1(a). The horizontal lines in (c} and (d} mark
the scales a, aorL " with rL =2 2; the number of WT
modulus maxima at each generation follows the Fibonacci
series (4};moreover, a symbol A or B can be assigned to each of
these maxima according to the Fibonacci recursive process (3}.
The analyzing wavelet g(x) is the Gaussian function.

tween two successive branchings, according to the general
formula [17]

DF

=Inrun/InrL

. (2)

The WT modulus maxima representation of the azimu-
thal Cantor set of a 10 particle DLA cluster is shown in

Fig. 2(b). At first sight, one does not see any conspicuous
recursive structure in the WT skeleton. One can, howev-

er, proceed to a systematic investigation of the value of
the scale factor rl between two successive bifurcations
[black dots in Fig. 2(b)]. The result of the statistical
analysis of 23 off-lattice clusters similar to the one shown
in Fig. 1(a) is reported in Fig. 3. The distribution of
scale factors displays a (unique) maximum at the value
r* =2.2 ~0.2. Then, if one inserts the numerical values
DF"=0.60+ 0.02 and ri* =2.2+ 0.2 into Eq. (2), one ob-
tains a branching ratio rg =(2.2) . —1.61. This numeri-
cal value is significantly different from 2, which unambi-
guously discards the possibility of an exact binary
branching process. The most striking feature is that this
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FIG. 3. Histogram of values of the scale factor rL separating
two successive bifurcations [0 in Fig. 2(b)] in the WT modulus
maxima skeleton of 23 DLA azimuthal Cantor sets. A single
maximum is observed for rI. =2.2+ 0.2.

value ra is remarkably close to the golden mean
=(I+J5)/2 2cos(n/5) =1.618. . . .

It is well known that the golden mean can be ap-
proached by means of successive Farey truncations
IY„=F„~~/F„to its continued-fraction expansion, where
F„areFibonacci numbers. Fibonacci sequences are natu-
rally generated by the recursive process

A AB, 8 A. (3)

If one starts with the species 8 at generation n =0, one
gets A at the generation n =1, and successively AB, ABA,
ABAAB, ABAABABA, . . . . In other words, the popula-
tion F„atthe generation n can be deduced from the two
preceding populations, F„—[ and F„—2, according to the
iterative law

F& =Fz —~+F&-2, Fp= 1, F~ =1 . (4)

(Notice that F„~and F„2arealso th-e respective popu-
lations of 3 and B at step n )In Fi.gs. 2(c) and 2(d), we
have magnified two regions of the WT skeleton in Fig.
2(b) corresponding respectively to two well-separated re-
gions of the azimuthal Cantor set [Fig. 1(b)] issued from
two distinct main branches of the considered off-lattice
DLA cluster [Fig. 1(a)l. The horizontal lines in the
(a, ()) half plane are drawn as guide marks for the succes-
sive "generations" of WT modulus maxima. From the
histogram in Fig. 3, these generations are (in a statisti-
cal sense) expected to occur at scales a„=aorL
=ao(2.2) ", where ao is a constant that depends on the
size of the DLA branch under study. The number of WT
modulus maxima at each generation follows closely the
Fibonacci series defined in Eq. (4). This observation cor-
roborates our previous estimate of the branching ratio
which is likely to behave like W„=F„+~/F„andthus is
expected to converge asymptotically to the golden mean.
As indicated in Fig. 2(d), some deviations from the Fi-
bonacci ordering are observed at small scales, but this is
not so surprising since at scales a —a few particle sizes,
the azimuthal Cantor set is very sensitive to small
changes in the radius R of the circle which delimits the
frozen region of the DLA clusters (Fig. I). The overall

Fibonacci ordering is, however, rather robust with respect
to the arbitrariness of the choice of this circle. As illus-
trated in Figs. 2(c) and 2(d), by assigning a symbol 8 or
8 at each maxima line issued from a bifurcation, one ob-
tains a coding of the WT skeleton that complies with the
recursive law (3). However, a systematic investigation of'

this coding for our statistical sample, reveals some ran-
domness in the relative position of symbols A and 8 at
the bifurcations A — AB. Apparently B is equally likely
to be found on the right or on the left of A. There exists
also some arbitrariness in the spatial location of A when
8 proceeds to 8 A; this arbitrariness is likely to result
from local fluctuations in the value of the screening angle
(about t)* =36') in the DLA branching morphology [91.
These fluctuations can produce some local departures
from the Fibonacci ordering. A close examination of the
WT skeleton in Fig. 2(b) reveals the presence of many of
these defects. But the Fibonacci sequences are statistical-
ly predominant in the WT modulus maxima representa-
tions of the 23 oA'-lattice DLA azimuthal Cantor sets in-

vestigated in this study. A tentative interpretation of the
numerical scale factor histogram in Fig. 3, in terms of
Cantor set models which incorporate some randomness on

top of a Fibonacci hierarchical structure, wi11 be reported
elsewhere.

A fundamental step in our demonstration is now to re-
turn to the DLA cluster itself and to point out Fibonacci
sequences in its disordered branched morphology [91. In

Fig. 4, we use the two-dimensional WT microscope [7j to
explore the internal structure of one main branch of a 10"
particle oA'-lattice DLA cluster. The analyzing wavelet is

the so-called Mexican hat. In Fig. 4(b), the magnifi-
cation is chosen in order to reveal three successive
significant branchings. These branchings proceed accord-
ing to the Fibonacci recursion law (3) as identified by as-
signing a symbol A or 8 at the branches of successive
generations. The original branch A gives two branches A

and 8; both of these branches bifurcate into two new

FIG. 4. One main extinct branch of a 10 particle oA'-lattice

DLA cluster (a), as seen through the optics of the two-

dimensional WT microscope (b). The analyzing wavelet is the
—x 2/2Mexican hat g(x) =(2 —(x( )e l*l ~. T~ is coded using 32

shades from white (Tg ~ 0) to black {max Tg & 0). The
magnification a ' is such that three successive generations of
branching are identified. At each branching, a symbol A or B
can be assigned to the new branches according to the Fibonacci
recursive process (3).
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branches, but one of the branches issued from B is

screened by the others and dies before reaching the refer-
ence circle that delimits the frozen region of the DLA ag-
gregate. This peculiar electrostatic screening actually
governs the growth process at each of its stages and origi-
nates in a statistical Fibonacci structural hierarchy [9].
Note that the observation of a perfect Fibonacci ordering
coincides with a succession of screening angles [easily
measurable in Fig. 4(b)] that do not significantly depart
from 8*=36'. There may exist, however, important
fluctuations in the screening angle value that can produce
some local departure from the Fibonacci hierarchy. But
despite the presence of these local structural defects, our
statistical wavelet analysis of 23 off-lattice clusters attests
that the DLA branching organization does exhibit a fas-
cinating prevalent tendency to be Fibonaccian. A sys-
tematic investigation of the actual relationship between
the Fibonacci branching ordering and the structural five-

fold symmetry is currently in progress.
To summarize, we have reported the discovery of Fi-

bonacci sequences in the frozen morphology of large mass
off-lattice DLA clusters. This observation is consistent
with a preferential branching ratio that converges asymp-
totically to the golden mean. This statistical hidden

hierarchy is likely to be intimately related to the structur-
al fivefold symmetry that underlies the self-similarity of
DLA clusters. These results provide an important clue to
the theoretical understanding of diffusion-limited aggre-
gation and should guide future work addressing the cru-
cial issue of the selection mechanism of the DLA rnor-

phology.
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