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FIG. 2. Intensity vs glancing angle of incidence, I vs g,
along [110] at 160 snd 395 K. Circles are the experimental
intensity values [(s),(c)]. The lines are calculated using the
two-atom shadow cone model. The small peak is calculated
for single vacancies, the large peak for s perfect [110] chain
[(b),(d)]. The arrows mark the critical angles from which the
surface lattice constants sre calculated. (s) snd (c) show the
experiment snd the sum of the calculated intensities from (b)
snd (d).

be below 10 A. [17]. When comparing the measured

blocking pattern with the calculations we find that above
400 K the formation of the minima is strong. y influenced

by steps along [110] and [112] (details to be published

[17]). This finding suggests "fish-scale-like" structures as
observed on Au(110) by STM (scanning tunneling mi-

croscopy) [18]. When inspecting the intensities of the
minima in the azimuthal pattern (Fig. 1) we find a con-
tinuous increase of the minimal intensity. This increase is
due to adatoms and/or steps, as concluded from compa-
rable findings from Au(110) and Ir(110) [19]. The mini-
mum yield data at 160 K are evidence for the existence
of steps along [110]which cause the blocking of all other
channels. At about RT the number of steps increases
up to about 400 K where the yields for [111] and [114]
saturate. The yields of [110], [112], and [001] increase
continuously, indicating that steps exist also along [112]
and that at higher temperature the steps decay again [3].
Detailed calculations will be published [17]. Finally the
intensities merge at 580 K, clear evidence for a liquidlike
layer.

The ion scattering experiment in the NICISS mode
[12,13] (Fig. 2) shows the presence of vacancies in the
[110]surface chains even at 160 K. The evaluation of the
I vs g data (glancing angle of incidence) is straightfor-
ward, the curves shown are calculated using a two-atom
scattering model. The model is based on the classical
shadow cone behind an atom [20]. By varying the angle
of incidence a second atom behind the leading atom is
used as a detector for the shadow cone cast by the lead-

TABLE I. The root-mean-square thermal amplitude per-
pendicular to the surface [(Az) ] ~, the critical impact an-

gle 4'„ the surface lattice constant a, the relative number
of vacancies n in the two top layer [110] chains, snd the
mean-square displacement q between the experimental and
the calculated I vs 4 distributions for three temperatures.

160
T (K)

276 395

[(»)']"' (~)
@,[iio] («g)
@c,[112] («g)
a[i;,] (A)
a[iio] (~)
n[i-, o] (%)
n(ii2[ (%)
'1[110] (10 )
g[iiz] (10 )

0.207
22.70
14.66
6.06

3.50 + 0.01
10.4 + 2
10.3+ 2

6.1
6.2

0.271
22.06
14.66
6.06

3.63 + 0.01
8.8+ 2
9.2+3

3.2
3.2

0.324
21.18
14.66
6.06

3.82 + 0.01
9.2+ 2
13.6 + 4

3.8
2.5

ing atom. Parameters entering into the calculation are
the interaction potential, the surface thermal vibrations
(here corresponding to a Debye temperature e, = 73 K),
and the surface lattice constant (3.5 A for a perfect [110]
chain). The main contribution to the thermal vibrations
are the displacements perpendicular to the surface [19].
The critical angles of 22.7' and 14.2' found in the ex-
periment give values of 3.5 and 6.4 A. for the distance
between the two atoms neighboring the vacancy. The
reduction of the value for the vacancy may be due to
an actual relaxation or an anharmonic potential for the
atoms at the end of [110] chains. At room temperature
the experimental result already deviates strongly from
the calculated result for a perfect chain. This discrep-
ancy is solved by assuming an anomalous expansion of
the lattice constant which causes the observed shift of
the critical angle (Table I). Table I summarizes the re-
sults of the [110] and of the [112] measurements. No
change of a[iiz] is found. The thermal amplitudes are
identical for the two directions and they follow the Debye
law within the temperature range of 160 to 400 K. The
quality of the "fit" between calculation and experiment
can be judged from the mean-square deviation given in
Table I. The number of vacancies and the [110] lattice
constant expansion are averages of the top two "visible"
layers of the surface including step edges. Even a pair of
adatoms in a [110]trough will contribute to a [110].The
theory [21] predicts vacancies in the second layer mainly
in qualitative agreement with our findings. It is sensible
to assume that vacancies exist in step edges (link sites

[18], and other STM studies); these sites are not taken
into account theoretically [21].

A qualitative measure of the disorder as a function
of temperature is obtained from the surface channeling
experiment (Fig. 3). At low temperatures we find the ex-
pected "half moon" shaped intensity distributions, e.g. ,

3453



VOLUME 68, NUMBER 23 PHYSICAL R EV I EW LETTERS 8 JUNE 1992

&110& T = 300 K &random& T = 400 K

12

8

O)

8
X

4
-8

azimuthal angle (dag. )

4
—8

azlm»thai angle (deg. )

16

&110% T = 480 K

16

&random& T = 480 K

12
U)
C
lO

'x 8I

12

8
0)

4
-8

azimuthal angle (dag. )

4
—8

azimuthal angle (dag. )

FIG. 3. Surface channeling patterns (2 keV Ne+), angle of incidence 6' along [110] and [random] (27.5' o8' [110])at 300,
400, and 480 K, respectively. The scaling is linear with an intensity increase of 0.14 from line to line.

for the [110] surface channels [15,20,22]. For the random
direction the intensity distribution is isotropic. At 480 K,
however, the half moon shape starts to vanish for the
[110] direction, i.e., a more isotropic intensity distribu-
tion is found. It is the combination of enhanced thermal
vibrations and the decay of the short-range order which
prevents the correlated motion of the ions along the sur-
face needed for channeling [17,20]. Trajectory lengths
for channeling at our energies are of the order of 50 A,
i.e. , average [110]chain lengths are shorter than about 10
atoms at 480 K [18]. From the point of view of surface
channeling the disorder is saturated at 480 K.

The I vs P results (Fig. 1) provide a demonstration
of the first-layer melting by a diferent technique. The
conclusions based on the behavior of the intensities of
the minima along the low index direction are the follow-

ing: (i) The step formation along [110] and [112] starts
at 270 K which causes the blocking and hence the inten-
sity increase in the other directions. (ii) Around 400 K
step or adatorn formation is occurring in the other di-
rections as well. These findings agree with the results of
MEIS, LEED, and XPD [8,10,11], but our results indi-

cate an additional source for an anisotropic behavior not
clearly identified previously [10,11]. The NICISS results

(Fig. 2, Table I) show the presence of vacancies at all tem-
peratures, predicted theoretically for Pb [21] and other
(110) surfaces [23,24], but not found by MEIS or LEED
because these techniques are not sensitive to vacancies.
The result of atom diKraction experiments, i.e. , the high
surface mobility, may be related to the presence of vacan-
cies [25]. The most unexpected and unpredicted result is
the anomalous thermal lattice expansion (Table I). This
may well be the main source for the previously suggested
anisotropies [10,11]. The expansion is certainly a form
of premelting, because the atoms move out of their lat-
tice sites. This shift is facilitated by the presence of the
vacancies. In fact, the small dependence of the num-

ber of vacancies on the temperature indicates filling of
vacancies by an expansion of the chains. If a 20-atom
long chain expands by one lattice unit at each end, the
lengths increase is 10%%uo. The previously suggested de-

cay of the chains at higher temperatures [3] is supported
by the channeling results (Fig. 3); we estimate the [110]
chain lengths to be below 10 lattice constants.
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In summary, point defects and steps play a role in the
premelting region of Pb(110), the melting may be initi-
ated by an expansion of the [110]surface lattice constant,
and new and independent evidence is found for the sur-
face melting eEect.
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