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Nonadiabatic Eff'ects in Hydrogen Diffusion in Metals

8 JUNE 1992

Yinggang Li and Goran Wahnstrom
Institute of Theoretical Physics, Chalmers University of Technology, S-4l2 96, Goteborg, Sweden

(Received 21 january 1992)

Molecular dynamic simulations for hydrogen diffusion in Pd are performed, using a potential based on
the embedded-atom method. It is found that a single adiabatic Born-Oppenheimer potential energy sur-
face cannot reproduce the wave-vector dependence of the quasielastic peak obtained in neutron scatter-
ing studies. By incorporating coupling to low-lying electron-hole-pair excitations among the conduction
electrons close agreement with the experimental result is obtained. This shows that in some cases one
has to go beyond the Born-Oppenheimer approximation in order to characterize correctly the diffusive
motion of hydrogen in metals.

PACS numbers: 66.30.3t

Molecular dynamic (MD) simulations have turned out
to be a powerful tool for understanding the structure and
dynamics of condensed matter. During the last decade
several new approaches have been suggested for describ-
ing the interatomic interactions in metals. The aim is to
be able to make quantitative statements and predictions
about real materials. Ab initio electronic structure
methods have been combined with MD simulations [I]
and efficient semiempirical potential energy surfaces have
been suggested [2]. Common to these approaches is that
they are based on the Born-Oppenheimer separation of
electronic and nuclear motion. The adiabatic multidi-
mensional potential energy surface determines the motion
of the nuclei through the classical Newton equations of
motion.

The application to metals may pose additional prob-
lems due to the presence of conduction electrons. Elec-
tron-hole-pair excitations can be produced with infini-
tesimal energy and on energetic grounds also a nucleus
moving with thermal velocity may excite electron-hole
pairs. This implies nonadiabatic changes in the electron
structure and in order to incorporate these eAects into dy-
namic simulations one has to go beyond the adiabatic ap-
proximation.

Here we consider hydrogen diA'usion in palladium at
low hydrogen concentration. The aim is to show that in

order to characterize the diffusive motion of hydrogen
correctly the use of a single Born-Oppenheimer potential
energy surface is highly questionable.

The reasons for choosing the H-Pd system are as fol-
lows: (i) Compared with Pd, hydrogen is light and its

coupling to the lattice vibrations is weak. Electronic exci-
tations among the conduction electrons can then become
important in providing an additional mechanism for ener-

gy dissipation. (ii) Hydrogen diffusion in Pd has been
studied experimentally using quasielastic neutron scatter-
ing [3-6]. These measurements give detailed information
on the hydrogen diAusion on an atomic scale, which is

important in the present context. (iii) Semiempirical po-
tential energy surfaces have been developed for H in Pd
[7,8] which describe the interatomic interactions in a
realistic way.

In a previous MD study by Gillan [9], discrepancies
between neutron scattering and MD results were ob-
served for the width of the quasielastic peak. Gillan used
a pair potential description and he clearly stressed the
likely importance of nonadiabatic eA'ects in H diA'usion in

Pd. At low temperature (T(100 K) it is now estab-
lished that nonadiabatic eAects are important for explain-
ing the temperature dependence of the motion of hydro-
gen in metals [10,11].

We have chosen the embedded-atom method (EAM)
for the interatomic interactions [7]. This method has
been tested in a large variety of situations and has proven
very versatile in describing and predicting structural and
dynamical properties as well as phase transitions in me-
tallic systems [21. The model is no more computationally
demanding than simple pair potential descriptions, but in-

corporates some essential many-atom interactions in met-
als. The method is empirical in nature because of the as-
sumptions about the electronic charge densities and the
fitting of the potential to experimentally observed quanti-
ties. The details of the method can be found elsewhere
[7,12]. For the Pd-Pd interaction we use the parametri-
zation by Foiles, Baskes, and Daw [12]. The embedding
energy for hydrogen is taken from the first-principles cal-
culations of Puska and Nieminen [13] and for the
eA'ective charge of a hydrogen atom we choose the form
Z(R) =Zoexp( —aR) [12]. For a we use the reasonable
value a=2 A ' and the value for Z0=1.75 a.u. is deter-
mined by fitting to the migration energy for H in Pd [14].
Given a set of nuclear positions [R} the above procedure
defines our adiabatic multidimensional potential energy
surface E([R}). We have tested the model on the vibra-
tional motion of hydrogen in Pd at room temperature.
Reasonable agreement with available experimental re-
sults is obtained, similar to the results presented in Ref.
[15]. The experimental value for the diffusion coefficient
is also reproduced, both for the temperature concerned
here (T—600 K) and for higher temperatures (T—800
and 1000 K).

Next the eAect of low-lying electronic excitations are
incorporated. The time scale for the electronic motion is

very fast compared with the time scale for the nuclear
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motion. The electrons adjust themselves very rapidly to
the motion of the nuclei, but not strictly instantaneously.
The single adiabatic potential energy surface has to be re-

placed by a continuous band of very nearly parallel sur-

faces, corresponding to different combinations of low-

lying electron-hole-pair excitations. In this limit of near
adiabaticity the inclusion of electron-hole-pair excitations
is straightforward, provided the motion of the nuclei can
be treated classically [16,17]. One only needs to add a
friction term and a stochastic force with white-noise spec-
trum to Newton's equation of motion [18,19],

mHRH(t) = —VE([R])—mHrlRH(t)+F"(t),

~here RH denotes the position of the hydrogen atom and

mH its mass. The friction coefficient g is an electronic
property and it can be expressed in terms of the density-
density correlation function for the electronic motion
[17]. In the general case, it is a tensor and depends on

the instantaneous configuration of the nuclear positions
[16,17]. Here, we assume a constant value, independent
on the location of the hydrogen atom. The stochastic
force F"(t) is related to the friction coefficient through
the fluctuation-dissipation theorem [18]. We only include
the friction term and the stochastic force into the equa-
tion of motion for the hydrogen atoms. Nonadiabatic
effects also influence the damping of the lattice vibra-
tions, but that effect can be neglected here and for the
motion of the Pd atoms we only use Newton's equation of
motion. More details will be presented elsewhere [14].

An important issue is the magnitude of the friction
coefficient, i.e., the strength of the nonadiabatic coupling.
We rely on calculations, based on the density functional
theory within the local density approximation, for a hy-
drogen atom immersed in a homogeneous electron gas.
Puska and Nieminen [13] obtained the value hri=4. 5
meV for an electron density appropriate for palladium
r, =1.5ao [20], where ao is the Bohr radius. The friction
coefficient is directly related to the stopping power of an
electron gas for the slow motion of ions and the numbers
based on the density functional theory give good agree-
ment with experimental data (for a recent review see
[21]). The MD simulations are carried out for a system
of 256 Pd atoms and 8 hydrogen atoms. That corre-
sponds to the hydrogen number concentration x=0.03,
which is the same as in the neutron scattering study by
Rowe et al. [4]. The "velocity Verlet" algorithm is used
[22] and it is extended, following Ref. [22], when the
friction term and the stochastic force are included. The
time step is equal to 0.5 fs and this comparatively short
time step is due to the rapid motion of the hydrogen
atoms. Periodic boundary conditions are used.

Initially the hydrogen atoms are put randomly on oc-
tahedral sites. The system is evolved in time at a high
temperature, of the order 1000 K, to randomize the sys-
tern, and it is then cooled quasicontinuously by smoothly
scaling the velocities. The pressure is adjusted by chang-

TABLE I. The friction coeScient g, the simulation tempera-
ture T, the hydrogen number concentration x, and the self-
diAusion coeScient D„ for both set 8 and set B. The error bars
represent a 95% confidence interval. Our results compare well

with diAerent experimental ones: D, =0.45x l0 cm s
(T=623 K, x-0.03) I4I, D, =0.55X IO cm's ' (T=630 K,
x =0.03) 13I, and D, =0.35 x 10 cm ~s ' (T =623 K,
x 0.04) [5I.

Set hri (meV)

0.0
4.5

T (K)

628.0+ 3.0
621.5+ 0.2

0.03
0.03

D, (10-4cm's-')

0.5l ~ 0.05
0.53+ 0.05

ing the volume of the simulation cell. Temperature and

pressure are monitored and when a stable situation is

achieved the subsequent time period, the production run,

is used for evaluating static and dynamic quantities. The
volume of the simulation cell is then kept fixed.

We have performed two different sets of calculations,
one denoted by A, where the motion is determined from

the single adiabatic potential energy surface E({R]),and

one denoted by B, where the coupling to electron-hole-

pair excitations is included with the friction coefficient

equal to br) =4.5 meV. Both sets of calculations are per-
formed at the same temperature as in the neutron scatter-
ing study by Rowe et al. [4] (see Table I). The pressure
is reasonably small, pV/NkaT=0. 022~0.004 and pV/
NkaT=0. 04+'0.02 for A and B, respectively, and the
lattice spacing is equal to a =3.94 A. To obtain good
statistics the production runs are extended to 600 ps
(1.2X IO time steps) in case A and to 300 ps (0.6&10
time steps) in case B.

The width of the quasielastic peak, obtained in in-

coherent neutron scattering measurements, gives direct
information on the diffusive motion. In particular, the
wave-vector dependence of the width reveals the nature of
the diffusive motion on an atomic scale. For small wave

vectors the half width at half maximum rung(q) ap-
proaches the limiting behavior co~g2(q) D,q, where D,
is the self-diffusion coefficient.

We have determined the mean square displacement as
well as the incoherent scattering function F'(q, t) for
several different wave vectors q. In Table I we give the
result for the self-diffusion coefficient obtained from the
slope of the mean square displacement. Our results com-

pare well with different experimental results (cf. Table I)
and it is partly due to the fact that we have fitted the pa-
rameter Zo in the EAM potential to the experimental
value for the migration energy [14]. Notice also that the
value for D, is hardly affected by including the coupling
to the electron-hole-pair excitations. For larger values of
ri (hr)) 5 meV), we expect the value for D, to be re-

duced.
We have also determined the half-width co~~2(q). To

reveal the character of the diffusive motion as clearly as
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FIG. l. The dimensionless half-width, h(aq) —= toity(q)a /D„
vs aq, where a is the lattice spacing and D, the self-diffusion

coefftcient. (a} q along (I001 directions and (b) q along (l I01
directions. Q: experimental results [4]; a: set A, without fric-
tion (htl 0.0 meV); 0: set B, with friction (htt=4. 5 meV);
and .": the CE model. The error bars represent a 95%
confidence interval.
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possible we show the result for the dimensionless half-
width A(aq)—= ta~t2(q)a /D, in Fig. 1. For short wave

vectors A(aq) (aq), and for larger wave vectors the
character of the diffusive motion determines the q depen-
dence. If we assume a simple-jump diffusion model [23]
with uncorrelated jumps between nearest-neighboring
octahedral sites, h(aq) has the form A(aq) =8[1
—cos(aq/2)] in the (100) directions and h(aq) =4[3
—2cos(aq/v%) —cos (aq/K8)] in the (110) directions.
These functions are shown in Fig. 1 and we will refer to
this as the Chudley-Elliott (CE) model. The experimen-
tal results in Refs. [3-5] follow closely the CE model. In

Fig. 1 we show the result by Rowe et al. [4], which is ob-
tained for a single crystal of Pd and at the same tempera-
ture and hydrogen concentration as used here. A con-
tradictory experimental result has been reported [6], but
crucial objections have been raised [9,24] against the
analysis made in Ref. [6]. First we consider A, the simu-

lation without coupling to electron-hole pairs. The result
from A does not agree with the experimental result (see
Fig. I). It shows strong non-CE behavior. This kind of
behavior can be explained phenomenologically in terms of
more complicated difl'usion models than the simple CE
model [25]. Similar results have been obtained previous-

ly by two other groups [9,25], using MD simulation and

simple pair potentials. Gillan [9] considered higher tem-

perature and larger hydrogen concentration. He obtained
a strong non-CE behavior and he made a large number of
trial simulations in order to investigate the sensitivity of
the result on the form of the potential. He concluded
that it was unlikely that the disagreement with the exper-
imental fact was due to inadequate interatomic poten-
tials. We have also used the potential proposed by Gillan
at the present temperature and hydrogen concentration.
Strong non-CE behavior is obtained [14], more pro-

nounced than with the EAM potential. Culvahouse and
Richards [25] found that by using a harder-core potential
the result can be brought to closer agreement with the
CE model, compared with using the Gillan potential.
However, they were not able to achieve complete agree-
ment with the CE model, even by going to a very hard-

core potential. Our conclusion is that the departure from
the CE model is most likely not due to an inaccurate adi-
abatic potential energy surface.

Next we consider B, the simulation where the coupling
to the electron-hole-pair excitations are included. With
the reasonable value h rl =4.5 meV for the coupling
strength close agreement with the experimental results is

obtained (see Fig. 1). We have investigated how sensitive

this result is on the value of ti [14]. Using h tl =2.0 meV

a similar result as with Art=4. 5 meV is obtained, but
with A y=0.5 meV the result is closer to the result from
simulation A. From this we conclude that hg=2. 0 meV

is sufficient for explaining the experimental result, but not

hrl =0.5 meV. It follows that the result is not sensitive to
the value of the friction coefficient, provided that Ag
-2-5 meV. Using the calculations by Puska and Niem-
inen [13] for a homogeneous electron gas, this corre-
sponds to r, values in the range r, —(1.5-3.4)ao.

We have also investigated what causes the different be-

havior between 3 and B and more details will be present-
ed in Ref. [14]. In the CE model the residence time is

exponentially distributed. We find a nonexponential de-

pendence for the residence time at the octahedral sites,
with a comparatively high probability of a short residence
time. This is more pronounced in A compared with 8,
and it is the main reason for the different result for the
half-width. Particularly in case A, a hydrogen atom can
move rather freely in between several different octahedral
sites. Its coupling to the lattice vibrations is weak [26].
The directions for two consecutive jumps are found to be
uncorrelated, besides a tendency for making a jump
directly back to the octahedral site from which the hydro-

gen atom made the previous jump. This effect is rapid in

time and uninfluenced by the coupling to the electron-

hole pairs.
Even with an accurate adiabatic potential energy sur-

face the result can be in error due to quantum effects.
The MD simulation is based on classical mechanics for
the motion of the nuclei. It seems, however, very unlikely

that quantum effects can make the motion more close to
the CE behavior at the present temperature, T-623 K.
The departure from the CE behavior is due to highly ex-

cited hydrogen atoms that move rather freely in between

several different octahedral sites. Treating this motion

classically at the present temperature is highly justified.
In conclusion, we have applied the EAM potential for

hydrogen diffusion in Pd and performed MD simulations

at the same temperature and hydrogen concentration as

used in the neutron scattering study by Rowe et al. [4].
We find that the EAM potential cannot reproduce the de-
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tails of the diA'usive motion and we conclude that the
discrepancy with the experimental fact is most likely due
to the use of a single adiabatic potential energy surface,
and not the particular form of the EAM potential. By in-

corporating coupling to low-lying electron-hole-pair exci-
tations among the conduction electrons in a reasonable
way, close agreement with the experimental result is ob-
tained. This is a strong indication that in some situations
one has to go beyond the Born-Oppenheimer approxima-
tion in order to characterize correctly the diffusive motion
of hydrogen in metals.
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