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Reversibility in Quantum Measurement Processes
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A measurement process is logically reversible if the premeasurement density operator of the mea-
sured system can be calculated from the postmeasurement density operator and the readout of the
measuring apparatus. We show that the continuous-measurement version of a quantum counter,
unlike the conventional photon counter, performs a logically reversible measurement. The physical
origin for such a distinction is found to be sensitivity to vacuum field fluctuations.
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The irreversibility of a quantum measurement has
rarely if ever been questioned, in part because a mea-
surement process involves state reduction and this re-
duction usually singles out one of the possible eigenval-
ues of an observable, eliminating all other possibilities.
This kind of measurement (i.e. , a sharp measurement),
however, requires a strong coupling between the measur-
ing apparatus and the measured system. If the coupling
is not strong enough, a single measurement can deter-
mine only an envelope that peaks unsharply around some
value. Since such an unsharp measurement does not ex-
clude possibilities other than this value, we may wonder if
there is a quantum rneasurernent that lets us reproduce
the initial density operator from the postmeasurement
density operator and the readout of the measuring appa-
ratus. This Letter answers this question affirmatively in
the context of the photon-number measurement.

A continuous photodetection process can be decom-
posed into a time sequence of two fundamental processes:
no-count and one-count processes [1]. A no-count process
is one in which no photons are detected, and the state
evolution during a no-count process is given (in the in-

teraction representation) by [2]

exp ( 2
at ar) p(t + r) exp ( 2

at ar)
p(t) =

Tr [p(t + r) exp (Aatar)]
(2)

Equation (2) gives the initial density operator p(t) in
terms of the final density operator p(t+r) and the knowl-

edge that no photons were detected between t and t+ ~.
The no-count process is therefore logically reversible.

exp ( ~~ at ar) p(t) ex—p (—~~ atar)
p t+r

Tr [p(t) exp (—Aatar)]

where p(t) is the initial density operator of the photon
field, at and a are the photon creation and annihilation
operators, and A is the coupling constant between the
photodetector and the photon field. The state evolution
represented by Eq. (1) is nonunitary because it is accom-
panied by information readout "no count" and projection
of the state must therefore be made throughout the pro-
cess. Nevertheless Eq. (1) can be inverted to give

A one-count process is one in which one photon is de-
tected during an infinitesimal time dt. The photon den-

sity operator immediately after the one-count process is
given by [1,2]

ap(t)at
~ [.(t).&.]' (3)

where t+ denotes a time infinitesimally later than t. This
equation cannot be inverted: that is, the premeasurement
state p(t) cannot be reproduced from the postmeasure-
ment state p(t+). This is because a conventional pho-
todetector does not respond to the vacuum state, so p(t+)
does not contain information about the vacuum state of
the premeasurement density operator —that is, the in-

formation given in the number-state basis by pp„(t) and

p„p(t) (n = 0, 1, 2, . . .).
Thus we find that the conventional photon counter

does not perform logically reversible measurement, and
that the physical origin of this irreversibility lies in the
counter's insensitivity to the vacuum state. Sensitivity
to the vacuum state is therefore essential for reversible
measurement.

The concept of logical reversibility proposed here is
fundamentally important because it gives a criterion for
deciding whether or not the system's information is con-
served during a measurement process: If the measure-
ment process is logically reversible, the amount of in-
formation contained in the postmeasurement density op-
erator plus the readout of the measuring apparatus is
exactly equal to the amount of information contained
in the initial density operator. In most measurement
schemes, some information is lost and the initial density
operator therefore cannot be calculated from the post-
measurement density operator and the readout of the
measuring apparatus. One might conclude from this that
the nonunitary state reduction associated with inforrna-
tion readout entails loss of information, thereby making a
quantum measurement irreversible. We show here, how-

ever, that this is not so if we understand reversibility
from the viewpoint of conservation of information.

The model we propose for reversible photon count-
ing is a continuous-measurement version of a quantum
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counter that is sensitive to the vacuum state. In a typi-
cal quantum counter (Fig. I) [3], an atom is brought into
a metastable state c by optical pumping (a —+ b) followed

by nonradiative decay (b ~ c). This device is sensitive
to a photon field whose energy matches the energy dif-

ference huo between levels c and d. Because the atom is
put into an excited state c, it will respond not only to
photons but also to vacuum field fluctuations by spon-
taneous radiative decay. Level d is assumed to be very
short-lived, so that as soon as the atom transits from c to
d, it decays into the ground state a, producing a photon
of energy hw that difFers from hcuo. Detecting a photon
with energy hw thus implies either stimulated or spon-
taneous emission between levels c and d. The quantum
counter was first devised for detecting infrared photons

[4), and it was later pointed out that it could also be used

to measure antinormal-order correlation functions [3]. In
the present Letter we use this device to provide a contin-
uous measurement of photon number, and we show that
it works as a logically reversible quantum counter.

The reversible photon counter is the one in which ex-
cited two-level atoms are injected one by one into an

optical cavity and the level of each atom coming out of
the cavity is measured. An output atom in the excited
state means that the detector responded neither to pho-
tons nor to the vacuum field (no-count process), and an

output atom in the ground state means that the atom
responded either to a photon or to the vacuum Geld (one-
count process). In this model, the measurement of the
atomic level replaces the measurement of a second pho-
ton of energy hu in quantum counters, but an essential
feature of quantum counters —sensitivity to vacuum field

fluctuations —is retained. Moreover, since at most one
photon is detected at one time, this device performs un-

sharp measurement. We will show that the combination
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FIG. 1. Schematic illustration of a quantum counter. An
atom is prepared in a metastable state c by optical pumping
(a -+ b) followed by nonradiative decay (b ~ c). The radia-
tive decay (c ~ d) stimulated by either photons or vacuum
field fluctuations is immediately followed by another radiative
decay (d ~ a) whose occurrence is detected by a conventional
photon counter.

of these two features makes the measurement process log-

ically reversible.
The interaction Hamiltonian between the photon field

and the atom is given by H;„& ——hg (ao+ + o a ), where

cr~ and 8 are the level-raising and level-lowering oper-
ators and g is a coupling constant. For the ground state
~g), and the excited state ~e), of an atom, they operate
as cr+]g), = ~e)„o+~e), = 0, 8 ~g), = 0, and o ~e),
= ~g), . Since the incident atom is excited, the initial
state of the combined atom-field system is given by

pa —f (to) = le)aa(e[ py(tp), (4)

where pf(tp) is the initial density operator of the pho-
ton field. We assume that each atom interacts with the
photon field for a very short time 6t Thus, th. e time
evolution of the combined atom-field system can be cal-
culated perturbatively:

tp+At ty

p, f(to+ 6t) = p, f(tp) + ) dti dt's dt~[H;„g(ti)) [H;„|,(tg), . . . , [H;„|;(t~),p, f(to)] ]],
m=i to tp

where [A, B] = AB —BA. Substituting Eq. (4) into Eq.
constant, we obtain

(5)
(5) and keeping terms up to second order in the coupling

T . p. f (t, + At) p,
'""'

pf(t, +At) =
(read)Tr~ —f p~ —f (tQ + At)pg

where Tr and Tr f denote trace operations over the

a~ pf (to)a

P f (tQ + bt) =igAt Pf (tP)a I3 ~e) (g~
—a Pf [g)«(e~

+ Pf (tQ) — aa Pf (tP) + Pf (tP)aa Is le)«(el + (gbt) a Pf (tP)a Ig)u~(gl (6)
(g6t) 2-$

The time evolution of the photon field depends on the
result of the atomic-state measurement. If the atom is atomic system and over the atom-field system, and
found in the ground state (i.e., the one-count process), Ps"' = ly~g) ~(g~ is the probability-operator measure
the photon state immediately after measurement, pf(tp [5] for the coupled system. Here ly denotes the identity
+ At), is given by operator for the photon field. Substituting Eq. (6) and

pg" into Eq. (7) yields for the one-count process
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Pf(&o) = „.', apf(tp+ At)ai„',
2 )

Ttt pt(t +ttet)&t („.et) a

where n = ata. This equation shows that the premea-
surement photon density operator py(to) can be calcu-
lated if we find the postmeasurement photon density op-
erator pf (to+ At) and if we know that the output atom

where Trf denotes a trace operation over the photon field.
If the output atom is in the excited state (i.e. , the no-
count process), the probability-operator measure is given

by p, = lf 8 [e),(e[. The photon density operator
immediately after the no-count process is therefore given
by

exp (—2
aat At) pf (to) exp (—2 aaiAt)

pf(tp+ At) =
Trf [pf (tp) exp (—Aaat At' )]

(9)

where A—:g At. Equations (8) and (9) show how the
photon state evolves according to the result of measure-
ment. Equation (8) describing the one-count process can
be inverted to give

was in the ground state. The one-count process is there-
fore logically reversible. And the no-count process is log-
ically reversible because Eq. (9) can also be inverted:

exp (&aat At) pf (to + At) exp (2aatAt)
Pf(to) =

Trf [pf (to + At) exp (Aaat At)]

Since continuous measurement consists of a sequence of
one-count and no-count processes [2, 6] and both of these
elementary processes are logically reversible, the whole
measurement process should also be logically reversible.
Here we explicitly prove this. For convenience of descrip-
tion, let us define the following two superoperators:

pf (t)—:'Aai pf (t)a,

8 pt(t) = exp
~

——aa x
~ pt(tl exp ——aa x) .

2

Suppose that the measurement process starts at tp and
ends at tp + 7. , and that m photons are detected at times
tq t2, . . . , t (to & tq & tq « t & to+~). Let
pf (ky, 52, . . . , k; tp, to+r') be the photon density operator
immediately after the measurement process. It can be
expressed in terms of superoperators J and 8, as [2]

~to+ a t Zt-t—t t t + ' ' '—estd t t J~t—t to Pf ( 0 )—
Pf ft1) t2) ~ ~ ~ ) tm) tP) tP + 7 ) Trf ~to+7 t Z~t t — J ' —' '~tq t, Z~t —topf (t0)— (14)

From Eqs. (12) and (13), we obtain

tSto+ W —t ~ ar~t t t 2 ' '—' ~tg t t Z~t t —t—p Pf (t0)

( ~
exp A) t;

~
exp l

——aa x (a ) pt(te)a exp
l

——aatx) . (15)-') ( 2 ( 2

The trace of this quantity gives the probability distribution P(tq, t2, . . . , L; tp, to + ~) that one-count processes occur
only at times t1, t2, . . . , t

7 (ty, t2t. . . , tttt; tp, to + 7r) = A exp A ) t,
~
Trf Py(to)a exp ( Aaa 7') (a )—

The time dependence exp(A g,.
~ t, ), which appears in the probability distribution (16), cancels out in forming the

ratio on the right-hand side of Eq. (14), and the density operator after the measurement process no longer depends
on the times when photocounts are registered, t, (i = 1, 2, . . . , t ). Thus we obtain

exp (—2aa~w) (a") pf(ts)a exp (—&aa"w)
py (m; t 0 t tp + r) =

Trf pf (ts) a exp (—Aaa ~) (a ) ]
(17)

where pf(m;tp, to+T) = py(5y, 8g, . . . , t;to, to+7) Equation (17.) describes the time evolution of the photon density
operator under the inBuence of the continuous measurement performed by a quantum counter. The evolution is

nonunitary because in continuous measurement both the atom-Geld interaction and the projection associated with
measurement proceed simultaneously. The crucial point here is that nonunitary state evolution does not mean that
the measurement process is logically irreversible. Unlike continuous measurement by a conventional photon counter

[2, 7], Eq. (17) can be inverted. By inspection we obtain

Pf(to) = ( 1 a exp 2aa ~ pf m; tp, tp + 7 exp 2 aa 7 a
m m

T)'f pf (m;tp, to + w) exp (2aa w) a „-+& .+&a exp (zaa w)

(18)
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Because the premeasurement photon density operator can be calculated from the postmeasurement photon density

operator and the result of measurement (i.e. , how many photocounts are registered), we find that the proposed

continuous-measurement version of a quantum counter performs logically reversible measurement.

What happens to the state evolution if the quantum counter is switched on but the output atomic state is not

measured? (We shall refer to this process as a nonreferring measurement process [2].) We will show here that the

state evolution drastically changes and that logical reversibility is no longer retained.
In the nonreferring measurement process we do not refer to either the number of photocounts or the times of their

occurrences. The superoperator T describing this process is therefore given by [2]

T. =)
m=O

tp+T
dt

tm

dt
t2

(19)

Substituting Eq. (15) into this equation yields

. e~ —1 ( A. .t ) .) m . ( A. .t'T jf(to) = ). exp
l

——aatr
l

(a~) jy(to)a exp
l

——aa r
rn! I, 2 ) ( 2

(20)

Since the trace of this quantity is unity, the time evolution of the photon density operator is given by

jf(to+ r) = ) exp
~

——aa r
[ (a ) pf(to)a exp

~

——aa r(e' —I) r' A

m! ) 2
(21)

We note that Eq. (21) is a solution to the master equa-
tion for a linear amplifier [8]:

—pf (t) = Aa jy(t)a ——aa py(t) + Py(t)aa . (22)

The state evolution described by Eq. (22) is obviously ir-
reversible. The physical origin of the irreversibility is the
quantum noise added in the process of amplification. In
fact, Eq. (21) can be expressed in the Heisenberg repre-

sentation as [9] a(to+ r) = ~G a(to)+ v'G —1 dt, where

G = e" is the power gain and dt is a noise operator that
satisfies (d) = (dt) = (dtd) = 0 and (ddt) = 1. The irre-
versibility in the amplification process is clearly caused
by the noise term dt, which is added unpredictably to the
relevant mode and thus degrades the signal-to-noise ratio
by 3 dB. In our model, the uncertainty corresponding to
the noise term results from our discarding the informa-
tion about whether the readout is the one-count process
or the no-count process.

In general, a quantum measurement process plays two
distinct roles with respect to the past and future of the
measurement process [10]. With respect to the past, it
verifies the predicted probability distribution by a num-

ber of measurements for an ensemble. With respect to
the future, it produces a new state by a single mea-
surement. Such an asymmetry in the direction of time
distinguishes quantum mechanics from classical mechan-
ics. This fact, however, does not imply that a quantum
measurement process is not logically reversible. We have
presented a concrete model that performs a logically re-
versible measurement.

A measurement process transfers information from the
system of concern to a measuring apparatus. Nonunitary
state reduction is associated with information readout,
but this Letter shows that a measurement process does
not necessarily imply loss of information. This discovery
merits further theoretical study.
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stage of this work.
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