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We examine the spatiotemporal dynamics of the nonlinear three-wave interaction describing the satu-
ration of an unstable wave by coupling to two damped waves. We observe spatiotemporal chaos involv-

ing coherent structures that are characterized by temporal and spatial scales determined by the parame-
ters in the problem.

PACS numbers: 05.45.+b

The nonlinear three-wave interaction (3WI) in its vari-
ous guises has applications to plasma physics, nonlinear
optics, and hydrodynamics [1,2]. We consider one form
of the 3WI which describes the saturation of a linearly
unstable parent wave by nonlinearly coupling to two
damped daughter waves [2-4]. This system exhibits spa-
tiotemporal chaos (STC). This may have implications in

the saturation of stimulated Raman scattering (SRS) ob-
served in intense laser-plasma interactions [5]. The term
STC specifically refers to the chaotic dynamics of coher-
ent structures or spatial patterns [6-9]. This is contrast-
ed with fully developed turbulence where there is a cas-
cade to small scales and with low-dimensional chaos
where spatial degrees of freedom are not involved. The
conservative form of the 3WI is integrable by inverse
scattering transforms (IST) and has soliton solutions
[1,10,11]. We consider the nearly integrable limit of the
3WI and use numerical simulations and perturbation
theory about the IST solutions to gain some understand-
ing of the dynamics.

The 3WI is a ubiquitous interaction that can occur
whenver three linear waves are in resonance in a weakly
nonlinear medium [1,2,4, 12]. We studied the dynamics
of the 3WI in one spatial dimension x and time t. For
weakly growing and damped waves the 3WI has the form
[2-41

rl a; D8 a; —y;a;= —a—aq,

a, aJ —
rl aJ+ yJaJ =a;a/, ,

B,at, +rl„at+ygat; =a;a~*,

(la)

(lb)

(lc)
where the a's are complex wave envelopes, the y's are
growth or damping coefficients, and D is a diffusion
coefficient. The diffusion term is usually not included in

the 3WI. This term arises if we assume that the growth
of the linear wave has a slow spatial variation. It is then
the lowest-order reflection invariant term that provides a
cutoff in wave number of the growth. It will become ap-
parent later that this term is essential for nonlinear satu-
ration and is very important in determining the long time
behavior [13]. The subscript i denotes the high-fre-
quency unstable parent wave. The other two waves are
referred to as the daughters. We have transformed to the

frame of the parent wave and normalized the magnitude
of the daughter group velocities to unity. We will consid-
er the case where the daughter waves have equal damping
(i.e., yJ yq). The length and time can then be rescaled
so that the damping coeIIicient is unity. The group veloc-
ities satisfy the condition vk ) v; ) vJ (i.e., the highest-
frequency parent wave has the middle group velocity, see
[14]). In the absence of growth, damping, and diffusion

(yt =D 0) the IST solution for this group velocity or-
dering is described by soliton exchange between wave

packets [1,10,11,15].
We numerically simulated the system on the domain

x C [O,L) with periodic boundary conditions. We began
with random real initial conditions and evolved until the
transients died away before the system was analyzed. It
can be shown that for real valued initial conditions the
envelopes remain real for all ti'ne [1,4]. We were in-

terested in the large system, long time limit. We con-
sidered the case with parameters D =0.001, y; =0.1,

yt =yt, =1, and L=20. These parameters were chosen
because they exhibit STC and fall into a regime where
perturbation theory is possible. However, the system is

extremely rich and different parameters do lead to vastly
different behavior. Aspects of these different regimes will

be touched upon later and details are given in [4]. We
measured the correlation function, St(x, t) =(at(x x',t-

t')at(x', t')),—where the angular brackets denote time
averages.

A sample of the spatiotemporal evolution profiles in the
STC regime of the parent and daughter envelopes is given
in Fig. 1. The length shown is one-half the system size
and t 0 is an arbitrary time well after the transients
have decayed. The profile of the parent wave is irregular
but spatial and temporal scales can be observed. There
are coherent structures of a definite length scale that can
be seen to grow, deplete, and collide with one another.
The profile of the daughter wave sho~s a sea of structures
convecting to the left. We only show one daughter; the
other will be similar but with structures convecting to the
right. Figure 2 shows the spectrum of static fluctuations
St(q, t=0). For the parent wave there is a cutoff near

q = 10 and a range of modes show up as a prominent
hump. The cutoff reflects the length scale seen in the
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FIG. 2. Spectrum of static fluctuations St(q, t =0) of (a) the
parent wave, and (b) the daughter wave.

FIG. I. Spatiotemporal profiles of (a) the parent wave

a;(x, t), and (b) the daughter wave aj(x, t)

spacetime profile. For q below the hump the spectrum is
flat. The daughter spectrum has a softer cutoff around

q =6 again indicating a length scale, although not as well

defined. Figure 3 shows the local power spectrum
St(x-0, cu). The spectrum for the parent clearly shows
two time scales. The spectrum bends over near co=0.02
which gives a long time scale and a shoulder at to=0. 3

gives a short time scale. Longer runs with these parame-
ters hint that there may be a very slow power-law rise of
undetermined exponent for frequencies below the low tu

bend similar to that observed in the Kuramoto-Siva-
shinsky equation [6]. The short time scale appears as the
growth and depletion cycle observed in the spatiotem-
poral profile in Fig. 1. The daughter power spectrum has
two peaks at high ta: One is where the shoulder of the
parent spectrum is and the other is at twice this frequen-
cy. The spectrum begins to bend over at co=0.007. This
bend is more pronounced in longer runs. It is not known
whether the spectrum becomes flat or has a power-law
rise like the parent for frequencies below the bend.

The main features of the behavior can be understood if
we consider the growth and dissipation as perturbations
about the conservative 3WI. The IST solutions for the
conservative case on the infinite domain show that soli-
tons exist but they do not necessarily belong uniquely to a
particular envelope [1,10,15]. Solitons in the parent wave
tend to deplete to solitons in the daughters which propa-
gate away. The simplest soliton solution for decay shows

that a soliton of the form ~at( =2rtsech(2rtx) will decay
into solitons in each of the daughters of the form ~at(
=J2 tsre hc[ t(rx+v tt)l, where rt is the IST spectral pa-
rameter for the Zakharov-Manakov [11]scattering prob-
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FIG. 3. Local power spectrum SI(x=0,co) of (a) the parent
wave, and (b) the daughter wave.
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lem. The spectral parameter is also the eigenvalue for a
bound state in the Zakharov-Shabat [16] scattering prob-
lem with the parent pulse as the potential function. In
the WKB limit g is related to the area of the parent pulse
through the Bohr quantization condition [1,3,16]

t„=(I/y; )In(rt/iI') . (4)

The cycling time observed in the spacetime profiles is this
time plus the time required to deplete. The depletion
time from IST theory is on the order I/2rt and for y; «2rt
this can be neglected and t, gives the cycling time. By
treating the damping and growth as a slow time scale per-
turbation of the IST soliton decay solution described
above and ignoring the effects of diffusion on this short
time scale, a multiple-time-scale perturbation analysis
about the IST soliton solution was used to estimate tI'. In
this calculation the ordering y;«yj«2rt was chosen.
The small parameter is yj/2rt but by simply rescaling in

time and space either yj or tt can be scaled to 0(l ). To
leading order this yields [4]

9 )J (5)

The derivation assumes that the decay time for a soliton
is much faster than the growth and damping time. Simu-
lations for parent soliton initial conditions verify Eq. (5)
[4]. In order to complete the calculation for the cycling
time t, it is necessary to estimate the threshold local g re-
quired for decay. By comparing the Bohr quantization
condition (2) with the WKB condition for decay with

damping (3) we know that rt & yi. . Using the IST

ia —
rt i

' zdx =tr/2, (2)4a
where [a,b] are turning points for a local pulse. A col-
lision between a daughter pulse and a parent soliton is

necessary to induce the decay of the parent [1,15]. For
arbitrary shaped parent pulses that exceed the area
threshold, the soliton content will be transferred to the
daughters leaving the radiation behind. Collisions be-
tween daughter solitons are elastic.

With the addition of weak growth and dissipation,
parent pulses deplete provided they satisfy the WKB
threshold condition [3,17]

fb
ia —y. i

t dx&tr/2. (3)J

The decay products in the daughters are quasisolitons;
they damp as they propagate away and do not collide
elastically. The soliton content of the parent is not com-

pletely transferred to the daughters. The parent wave

with some initial local eigenvalue rt will deplete and be
left with some remaining area. This area is due to the
conversion of soliton content into radiation by the pertur-
bations. This left over area can be represented by an

effective "eigenvalue" rt'. This remaining part of the
parent will then grow until it exceeds the threshold for
decay. This time denoted by t, is given by

8»a;+qoa; 0, aj ai, 0, (7)

where qo=(y;/D)'t . Modes with q &qo will damp and

those with q (qo will grow. Thus the fixed point is al-

ways unstable to long wavelength fluctuations. However,
when a local area between two turning points of the
parent wave contains a bound state with eigenvalue rt it
will deplete. In the depletion process broad parent pulses
will be decimated. The growth in the q (qo modes are
thus saturated nonlinearly. This results in long wave-

length distortions beyond lengths 2tr/qo. The principle
mode qo was observed as the cutoff in the spectrum of
static fluctuations [Fig. 2(a)]. The mode qo defines the
correlation length for the parent, g„=2~/qo. If D=O
there will not be any nonlinear saturation of the instabili-

ty because qo would become infinite and so would the am-

plitude required to fulfill the area threshold (3).
The long time scale for the parent r„is given by the

diffusion time across a length g„giving r„=(2)tr/y;.
This is the time scale in which the local parent structures
will shift position, collide with other structures, or diffuse
away. The long correlation time observed in the daugh-
ters is associated with the interaction of the daughter
quasisolitons with the parent structures. Whenever
quasisolitons collide with the parent structures they may
induce a decay and create a new quasisoliton where the
collision occurred. This would lead to a long correlation
time for the daughters. As the parent structures drift so
would the creation location of new quasisolitons. Howev-

er, because the quasisolitons have a different width than
the parent structures, the long time scale for the

scattering space perturbation theory developed by Kaup
[l,18,19] and recently reviewed in Ref. [20], we con-
structed the time dependence of the IST scattering data
due to the perturbations. The same ordering as the mul-

tiple scale calculation was chosen. From this we were
able to estimate rt to leading order to be [4]

rt=2 Zg+ 44p y, (6)

where (p is the parent correlation length and will be
defined later. Equation (6) is sensitive to the amplitudes
of the colliding daughter waves that induce the decay.
The calculation assumes the decay is induced by col-
lisions with quasisolitons with the same phase from each
daughter generated two correlation lengths away. The
relative phases of the colliding daughters is very impor-
tant. If we consider real amplitudes, Eq. (la) shows that
two daughter quasisolitons with opposite signs (phase)
actually reinforce the parent rather than make it deplete.
Thus expression (6) should be considered more of a lower

bound. In the simulation, radiation and diffusive effects
will be relevant and may also further delay the decay of
the parent. From q we are able to estimate the daughter
correlation length. This is given by the quasisoliton width

&d =2/tI.
The long time behavior is governed by the diffusion.

The trivial fixed point of Eq. (1) is given by
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daughters would be given by the diffusion time across a
quasisoliton width yielding rd=4/tI D. The newly creat-
ed quasisoliton damps while it continues to propagate
along the characteristic. However, when it collides with
another parent structure it could induce a decay and re-
peat the process. The parent structures act as amplifiers
regenerating damped quasisolitons that collide with them.

Using the above analysis for the parameters of the
simulation we obtain the following estimates: ip=400,
qo =10, („=0.6, t)'= I, t)=2.2, t, =8, (d =0.9, and
rd =800. These estimates corroborate fairly well with
the simulation. The estimate for t, is a bit low compared
to the shoulder in the parent po~er spectra at co-0.3
corresponding to t =20. Ho~ever, the spacetime profiles
in Fig. 1 do show some of the parent structures cycling
near the predicted time scale, so the calculation does pre-
dict a lower bound.

A word should be said about the system size. It is clear
with the very long correlation times for the daughters
that they cycle the box many times before correlations
decay away. Thus for long times, the temporal correla-
tion function along the characteristic or at a single spatial
location would be the same. This was borne out in the
simulation. It is unknown what the precise boundary
effects are since it would be impossible to numerically test
a system large compared to this long time scale. Howev-
er, with other runs of varying length, it was found that
the above time scales seem to be unaffected by the system
size as long as it is much larger than g„.The power-law
rise for the parent power spectrum below 2trlr„seems to
decrease in exponent as the system size increases.

We chose parameters where perturbation theory about
the IST solutions could be applied to try to understand
the dynamics. However, the behavior does dramatically
change for different parameter regimes [4]. For strong
growth rates, the long time scales observed tend to disap-
pear and only the growth and depletion cycling time is
evident. The parent grows strongly and depletes violently
preventing the structures from becoming established.
The larger the growth rate the larger the amplitudes of
the quasisolitons [4]. Another regime is when the
diffusion is large so the parent structures are much
broader than the damping length of the daughters. In
this situation the daughters grow and damp within the
confines of a parent pulse. Spatial exchange of informa-
tion between these pulses is very slow. These and other
regimes are reported in Ref. [4]. It is quite clear that the
3%I in spacetime is an extremely rich system. For weak
growth and dissipation, it exhibits STC and perturbation
theory is able to estimate the length and time scales.

The spectral broadening and amplitude saturation of
the unstable wave occurs for almost all parameters and is

independent of the order of the group velocities. As an
application we have considered the saturation of SRS due
to decay of the electron plasma wave (EPW) [4]. The
unstable EPW in SRS can decay rapidly to another EPW
and ion-acoustic wave. The ensuing STC [4] broadens
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the spectrum and saturates this EPW which, for a fixed

input laser power, leads to [21 the saturation of the scat-
tered wave in SRS. Further details will be given in an

upcoming publication.
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