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Escape and Synchronization of a Brownian Particle
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The escape and synchronization of a 1-pm Brownian particle from an optical trap is presented. The
probability distribution of residence times within a given well is exponential with a cutoff at short time.
Temporal modulation of the well leads to synchronization.
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Brownian movement is a classic of statistical physics.
In his seminal work, Kramers developed a theory on the
thermally activated escape from a potential well [I]. In

this Letter we present a visualization of the escape of a
macroscopic particle and show that the theory is quanti-
tatively verifiable. Rather than make analogy to a parti-
cle in a well [2], we consider a fluctuating Brownian par-
ticle. Using the technique of optical traps [3,4], we local-
ize the particle in an optical potential well and study its
escape. We then enrich the dynamics by temporal modu-

lation of the well and observe the proposed stochastic
synchronization [5].

This is a model system for a wide range of phenomena
in nature, from neuronal action potentials to muscular
motility, and even climate change. The concept invoked

is always synchronization of a stochastic escape within a
double potential well. As far as we know, this is the first

experiment directly analyzing the process for a particle in

a double well, subjected to intrinsic thermal activation.
Optical trapping is conceptually simple. A dielectric

object in an electric field is polarized. In the presence of
an electric field gradient, the polarized particle moves to-
wards the region of highest field. The transverse Gauss-
ian intensity profile across the width of the beam of stan-
dard lasers pulls the object towards the beam axis [3].
To counter the destabilizing radiation pressure, one
sharply focuses the laser, imposing an electric field gra-
dient along the beam direction [4].

By constructing an optical double potential well using
two beams for a Brownian particle, direct observation of
the thermally driven escape is possible. The process is

visualized for a I-pm glass sphere in water at room tem-
perature using video microscopy. The probability distri-
bution of residence times, i.e., of the intervals of time be-
tween escape events from well to we)l, is exponential with
a cutoff' at short times. By evaluating the mean of these
distributions (-2 sec) and extracting an upper limit to
the cutolf (~0.1 sec), we quantitatively verify Kramers
model and measure interwell energy barriers around
(2-3)k T.

Synchronization of a stochastic process by periodic
external forcing was proposed by Benzi et al. [5]. To ob-
serve this phenomenon, the double well was built so that
one could modulate the depths of the wells. We have ob-
served and measured a synchronization of the escape pro-
cess by small amplitude modulation.

Let us first describe the experimental aspects. The ex-
periment is built around and through an inverted micro-

scope (Fig. 1). The 488-nm TEMOO output of an argon
ion laser, expanded by lenses Ll (f=38.2 mm) and L2
(f=175.0 mm), enters into the microscope and is strong-

ly focused into the sample by a 100X objective, the
diverging part of the beam acting as the optical trap.
The power needed is about 10 mW per trap. The sample
sits on a translation stage. The charge-coupling-device
camera signal is recorded on an S-VHS video recorder.
Images were analyzed directly off the monitor.

The optical setup divided and recombined the original
beam with two beam splitters (BS1 and BS2) which al-

lowed independent positional control via the two mirrors
(M2 and M3). We positioned the two laser beams at a
distance d from each other and the beam waist at a

height s above the bottom coverslip of the experimental
cell. When the two beams are brought close together, the
transverse potential along the line connecting their
centers is reduced, allowing the particle to escape from
one trap to the other, defining the one-dimensional axis of
the experiment.

To have a barrier height Q sufficiently small, the in-

terwell spacing d must be about 1 pm. Changes in d by
as little as 100 nm dramatically changed Q. We chose to
add neutral density filter wheels (FW I and FW2) to each
beam, providing independent control of the intensity.

The various control parameters of the experiment in-

clude the geometry of the double well, i.e., the particle ra-
dius a, interwell spacing d, and beam waist position s.
The laser intensity I sets the barrier height Q and the
overall depth of the double well. The particle moves in

water with viscosity g, at the ambient temperature T,
stable to less than I C.

Samples are prepared by diluting a stock of 1-pm silica
spheres down to a number concentration of roughly one
sphere per microliter. Cells are built out of a pair of No.
1 coverslips separated by strips of "parafilm" and sealed
with epoxy and wax. We used bright-field microscopy
with an overall magnification on the TV monitor of
12 500.

The video image of intrawell fluctuations and interwell

escape events were recorded. Analysis of these escape
"events" was done on a Macintosh computer, the video

tape being played at reduced speed. The probability dis-
tribution p(r) of residence times is calculated, normal-
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FIG. I. Experimental setup. (a) Geometry and schematic of the double well. (b) The optical arrangement. Lenses L I and L2
expand the beam; beam splitters BS3 and BS4 define the two beams. BB is an absorber. Neutral density filter wheels FH l and
FfY2 are driven by the stepper motor.

ized by the total number of events N.
We conservatively estimate an experimental temporal

resolution of /)t =120 msec. To determine the functional
form of the probability distribution we used —, -sec bins.

The interwell crossing time, below the experimental un-

certainty, was ignored (usually two video frames or 67
msec). The first three moments of the distribution are
used —the mean value, the standard deviation, and the
skewness.

We now turn to the residence time probability distribu-
tions. Within his paper, Kramers derived the rate of es-

cape for a Brownian particle in the large viscosity limit

[11. One finds that the mean residence or Kramers time
Is

Fig. 2 fits the description of an exponential distribution.
We then fitted the values of each &

-sec bin (inset of Fig.
2) with the associated statistical uncertainties, using a

weighted exponential of the form p(r) =Aexp( Xr)—,
yielding A. =0.76+ 0.05; thus F =1.3+ 0. 1 sec, consistent
with the data itself.

Figure 2 also shows a cutoff in the distribution at short

times, reflecting the relaxation time r R of the particle
within the well. From this cutoff, one can estimate the

relaxation time rR=0. 1+0.1 sec, a large uncertainty.
From the estimated r g and the measured mean Fg one

12

r Ir
= (6zria/mro ) exp [Q/k T) = r It ex p[Q/k T), (1)

where a and m are the particle radius and mass, ro the
associated quadratic frequency of the potential U
a- —,

'
mm x, assumed to be the same both at the base of

the well and at the top of the barrier, and barrier height

Q. The prefactor re is the relaxation time within the
well. Since we are observing a homogeneous Poisson pro-
cess, each escape event is random and of small probabili-
ty. It is expected then that the residence time distribu-
tion should have an exponential density of the form

p(r ) =xexp[ —)j.r).
Figure 2 presents a typical measured probability distri-

bution. This distribution contains N =219 escape events

sampled over a 15-min period. The first moment of the
distribution defines a mean Kramers time of Fg =1.3 sec,
the standard deviation o.=l.3 sec, and the skewness s
=2.0. An exponential distribution p(r) =kexp( —

A, r)
has a mean equal to the standard deviation k ' =i =o.
and a skewness of 2. Thus, the statistical description of
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FIG. 2. Residence time probability distribution. Histogram

of the distribution showing the exponential decay and the cutoA

at short time. N=219 events, F=1.3 sec, a=l.3 sec, skew

=2.0. Bin width —,
' sec. Inset: Logarithmic plot showing

weighted exponential fit to the data. A, rt =0.76+ 0.05. Bin

width= 2 sec.I
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deduces a barrier height according to Eq. (1), Q/kT
=2.6+ 1.0. The uncertainty comes mainly from the esti-
mate of the relaxation time.

As a check, one can estimate an upper bound of the
barrier height by extending the parabolic shape to the
crossover point between the two wells using the harmonic
oscillator energy. For separation d =1.0 pm and particle
radius a =1.0 pm, one finds Q/kT=5. 8+ 6. 1 consistent
with the previous values.

Further, one can independently estimate the relaxation
time from different measurements of the well depth [6]
using the harmonic oscillator energy and the definition of
the relaxation time. This leads to alt =90 msec, quite
close to the cutoff estimate from the distribution.

Let us now discuss synchronization, an idea first pro-
posed by Benzi et al [5]. .A double well potential within
the Langevin formalism is used. The model, in the over-
damped limit where the inertial term has been dropped, is

x =ax —bx +A cos(Qt+ ()) +g(t),
where a and b are quartic potential parameters, A is the
modulation amplitude, 0 is the modulation frequency, 8
is the phase, and ((t) represents the IIuctuations. The
only analytic treatment is in the adiabatic limit where the
period of modulation is long relative to the mean escape
time [7,8]. Starting from Benzi et al. 's early publica-
tions, a large set of theoretical work [9-12] some with

numerical simulations [13,14] or analog simulations
[15-17] as well as experiments [18,19] describe various
developments of the so-called "stochastic resonance"
idea.

In the experiment, we have observed two characteristic
times —the mean Kramers time Frr and a cutoff or relax-
ation time rlt. To synchronize this escape process, we

add a third time, a modulation period r (in effect r/2 is
the relevant time). There are then three regimes depend-

ing on whether the dimensionless time i = r/r Ir is greater
than, equal to, or less than 1. Experimentally, to periodi-
cally modulate the depths of the potential wells one varies
the intensity of each laser beam, since well depth is pro-
portional to intensity. By oscillating the neutral density
filter wheels (FW 1 and FW2 in Fig. I) over a small angle
AO, one varies the intensity of each beam in phase opposi-
tion. Modulation amplitude A and period r are set by
two inputs to the stepper motor controller.

The so-called adiabatic limit corresponds to a long
modulation period relative to the mean Kramers time
Fp ~ i. We observe in this regime synchronization about
the modulation period r, and some of the "natural" dis-
tribution at short times, as shown in Fig. 3(a). This is

physically understandable since the wells are modulated
slowly enough for the particle to have a reasonable proba-
bility to escape at short time.

In contrast, when the modulation period is such that
rg ~ r ~ Flr, one observes a structure of odd harmonics
in the probability distribution and the disappearance of
the natural distribution at very short time [Fig. 3(b)].
The physics of the harmonic structure is fairly evident.
As the modulation is too short, the particle might not es-
cape every r and must wait extra periods 2r, 4r, or 2nr,
with a weaker probability to be in the initial well each
time.

When the modulation period is equal to the mean Kra-
mers time rIr =r, a maximal synchronization occurs,
meaning no observable harmonic structure and distribu-
tion at short time (Fig. 4). It is important to mention
here that there is no evidence for a resonance phenome-
non. The line shape is independent of modulation period,
changing only with amplitude. There is merely a particu-
lar condition, i 1, at which both the harmonic structure
and the natural distribution at short time are strongly re-
duced. For r» 1, the short time distribution reappears
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FIG. 3. Probability distributions with a modulation period
diAerent from the mean Kramers time. Histogram of residence
times for (a) i r/rs 1.54 showing synchronization and a
distribution at short times (N =282 events) and (b) i =0.38
showing a structure of odd harmonics (N =224 events). Bin
width g sec. A ~7%.
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FIG. 4. Probability distributions with a modulation period
near the mean Kramers time. (a) i 0.89 (N 147 events),
(b) r 1.00 (N 300 events), and (c) i I. I I (N 408
events). Bin width —,

' sec. A ~ 7%.
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FIG. 5. Exponential decay constant of odd harmonic peaks
vs dimensionless modulation time. 3 = ~ 7%.

and for r «1 one samples it.
An odd harmonic structure was first seen in analog

simulations [15]. A theory to describe the exponential

decay of the harmonic peaks was worked out in the limit

where the amplitude A goes to zero while the amplitude
to noise intensity ratio A/D goes to infinity [17]. As our

potential is of the order of 3kT, the results of this theory
do not apply. We nonetheless observe an exponential de-

cay. Figure 5 shows the behavior of the decay constant X.

Let us note a surprising result of the experiment.
Beyond the exponential decay of the harmonics, one sees
a resurgence of them. For example, in Fig. 3(a), the
eleventh and twelfth harmonics can clearly be seen, which

seems to appear when mal(, =nr.
In conclusion, we have observed the Brownian escape

of a 1-pm particle in water at room temperature from an

optical potential well and its synchronization. Further,
the present systems will allow one to study the interplay
between noise and temperature, an area not well under-

stood in most dynamical systems experiments.
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