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Phase Separation in Binary Hard-Core Mixtures: An Exact Result
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We prove the existence of a first-order, entropy-driven demixing transition in a simple lattice model
for a hard-core mixture. The existence of this transition follows from the fact that this lattice model can
be mapped onto an Ising model with nearest-neighbor interactions for which the phase behavior is
known. The same mapping leads to a very simple interpretation of the entropic contribution of the sol-
vent to the interaction parameter y in the Flory-Huggins theory of polymer solutions.
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The phase stability of a liquid mixture is determined by
the (Gibbs) free energy of mixing. This free energy is
the sum of an entropic and an enthalpic contribution.
For a long time, it was believed that enthalpic interac-
tions are essential for fluid-fluid phase separation in sim-
ple (“atomic”) mixtures. This belief was partly based on
the early work of Lebowitz and Rowlinson [1], who stud-
ied the phase behavior of binary mixtures of dissimilar
hard spheres within the Percus-Yevick (PY) approxima-
tion. Lebowitz and Rowlinson found that, at least within
the PY approximation, hard spheres of arbitrary size ra-
tio will mix in all proportions in the fluid phase. The im-
plication of this result was that entropic effects are not
enough to cause a miscibility gap in a simple fluid mix-
ture.

In a recent Letter, Biben and Hansen [2] have used a
more sophisticated analytical theory for dense fluid mix-
tures. Unlike the PY approximation, this theory is found
to predict that an asymmetric binary hard-sphere mixture
should phase separate if the sizes of the two spheres are
sufficiently dissimilar (typically, if the size ratio is less
than 0.2). This result is clearly of considerable funda-
mental interest. However, as in the case of Ref. [1], it is
based on an approximate theory for the hard-sphere mix-
ture. Hence, one may wonder to what extent the result
found in Ref. [2] depends on the approximations that are
used to compute the equation of state of the mixture.
Clearly, it would be highly desirable to have a model sys-
tem of a binary mixture for which the existence of a pure-
ly entropic demixing transition can be proven exactly.

In this Letter we show that this can, indeed, be done.
We construct a simple lattice model of binary hard-core
mixture. By transforming to a grand-canonical ensemble,
we can map this binary hard-core mixture onto a one-
component lattice gas with attractive nearest-neighbor in-
teractions. This mapping is of interest because the one-
component lattice gases can, in turn, be mapped onto
Ising-like models for which, in some cases, the phase be-
havior is known exactly. To illustrate our approach, first
consider a trivial model system, namely, a square lattice
with at most one particle allowed per square. Apart from
the fact that no two particles can occupy the same square
face, there is no interaction between the particles. For a
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lattice of N sites, the grand-canonical partition function
is

E=%exp[ﬂu;n;]. )

The sum is over all allowed sets of occupation numbers
{n;} and p is the chemical potential. Next, we include
“small” hard particles that are allowed to sit on the links
of the lattice (see Fig. 1). These small particles are ex-
cluded from the edges of a square that is occupied by a
large particle.

For a given configuration {n;} of the large particles, one
can then exactly calculate the grand-canonical partition
function of the small particles. Let M =M ({n;}) be the
number of free spaces accessible to the small particles.
Then clearly
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where z; is the fugacity of the small particles. M can be
written as

M({ni})=2N—4Zn,+§n,n,, &)
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FIG. 1. Exactly solvable lattice-gas model for a mixture of
large (black squares) and small (white squares) hard particles.
The crosses indicate which small-particle sites are excluded by
the presence of large particles.
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where 2/ is the number of links on the lattice and the
second sum is over nearest-neighbor pairs and comes
from the fact that when two large particles touch, one
link is doubly excluded [3]. The total partition function
for the “mixture” is

Emixlun’.=§exp [[ﬁﬂ —411'](1 +z.\')]2_ni

+1n(1+zs)Zn,'nj] , 4)
{ij)

where we have omitted a constant factor (1+2z,)>".
Equation (4) is simply the expression for the grand-
canonical partition function of a one-component lattice-
gas Ising model with a shifted chemical potential and an
effective nearest-neighbor attraction with an interaction
strength In(1+2z,)/B. As is well known, this lattice model
can again be transformed to a 2D Ising spin model that
can be solved in the zero-field case [4,5]. In the language
of our mixture model, no external magnetic field means

U+z)%=z, (5)

where z;=exp(Bu), the large-particle fugacity. The
order-disorder transition in the Ising model then corre-
sponds to phase separation in the language of our model.
This demixing is purely entropic, just like the transition
predicted by [2] for the hard-sphere mixture. In fact, the
mapping described above can also be carried through
when energetic interactions between the large particles
are included. However, for the sake of clarity, we will re-
strict ourselves to thermal hard-core mixtures.

Of course, there is a wide variety of lattice models for
hard-core mixtures that can be mapped onto one-
component systems with effective attraction. The model
discussed above is only special in the sense that it can be
mapped onto a model that is exactly solvable. In particu-
lar, from the known results for the 2D Ising model (see,
e.g., [6]), it is straightforward to evaluate the composi-
tion of the coexisting phases along the entire coexistence
line. This coexistence curve is shown in Fig. 2.

One important question that is raised by the work of
Biben and Hansen [2] is whether the demixing transition
is of the fluid-fluid or the fluid-solid type. The phase
transition in the square-lattice model that we discussed
above provides no answer to this question, as there is no
distinction between “‘liquid” and “solid” in a lattice gas
on a square, or simple-cubic, lattice. There are, however,
slightly more complex lattice models that do have a dis-
tinct solid and fluid phase. An example is a mixture of
large and small hard hexagons on a triangular lattice.
This model can be solved exactly in the limit that only
small or large hexagons are present. In the latter case,
Baxter [7] has shown that the system undergoes a fluid-
solid transition. To our knowledge, the phase behavior of
the mixture cannot be computed analytically. However,
we have performed preliminary computer simulations on
this model that show a clear demixing transition. Thus
far, however, we have not found evidence of a fluid-fluid
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transition in this system.

Yet, from the above mapping, it is immediately obvious
that a fluid-fluid transition does, in fact, occur in another
hard-core mixture, namely, that of a mixture of hard-core
monomers and polymers on a lattice. To this end, we
consider once again our model of a mixture of large and
small hard squares (cubes, in 3D) on a square (cubic)
lattice, i.e., the model that could be mapped onto the
one-component lattice gas with nearest-neighbor interac-
tions. We now construct “polymers” by connecting N
large squares (cubes), while the solvent is represented by
the small particles. The simplest polymers are made by
connecting N large particles by nearest-neighbor bonds
only. A grand-canonical summation over all configura-
tions of the small particles yields a very simple expression
for the (canonical) partition function of the polymers,
namely,

(6)
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with J=kgTIn(1+2z;) and where the sum is over all
acceptable (i.e., nonoverlapping) configurations of the
hard-core polymers. Equation (6) is precisely the expres-
sion for the partition function of the Flory-Huggins lat-
tice model [8]. This model has been studied extensively
both using approximate analytical theories, in particular
the well-known Flory-Huggins theory and modifications
thereof (for a critical review see [9]) and, more recently,
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FIG. 2. Phase diagram of the model system shown in Fig. 1.
X; denotes the molar fraction of large squares; z; is the fugacity
of small squares. The drawn curve indicates the composition of
coexisting phases. Note that this curve is asymmetric. In par-
ticular, the critical point (indicated by a black dot) is located at
X;=2"2—1. Along the coexistence curve the fugacities of the
large and small particles are related through Eq. (5).
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by direct numerical simulations (see, e.g., [10,11]).
Traditionally, the coupling constant J has been interpret-
ed as a purely energetic interaction. In contrast, in the
context of the model that we consider, J is of completely
entropic origin. We can now translate the results that
have been obtained for the Flory-Huggins lattice-gas
model directly to our hard-core mixture. This means that
many effects that in the past were interpreted as originat-
ing from energetic attractions can also be obtained from
purely entropic effects. In particular, the existence of a
first-order fluid-fluid phase separation in this model pro-
vides direct proof that a purely entropic demixing transi-
tion exists in a hard-core polymer-solvent mixture. Our
analysis also yields a very simple “entropic” interpreta-
tion of other, closely related phenomena, such as polymer
collapse in a “poor” solvent. It is, perhaps, worth point-
ing out that in our model, the solvent molecules are
smaller than the monomeric units of the polymer. In con-
trast, in the original Flory-Huggins lattice model, there is
no such size asymmetry. We can, however, construct a
hard-core lattice model where solvent and monomeric
units occupy the same volume. It can be shown that the
solvent-induced polymer collapse will also occur in such a
“symmetric’’ model system.

Finally, we note that the Flory-Huggins theory for
polymer solutions yields the following (approximate) ex-
pression for the free energy of a polymer solution,

Foix _ ¢
kseT N
where ¢ is the fraction of the volume occupied by poly-

mer, while the parameter y is related to the coupling con-
stant J of the original lattice model by

Ing+(1—¢)In(1 —¢)+x0(1 —9¢) , )

x=%(1/k5T)nb=;‘nbln(l'f'zs), ()

where ny, is the coordination number of the lattice. If, as
was assumed in the original Flory-Huggins theory, J is
due to energetic interactions, then y should vary as 1/T.
However, in the present (extreme) interpretation of the
same lattice-gas model, the parameter ¥ would be com-
pletely independent of temperature. There is, in fact, a
large body of experimental data that shows that, for
many polymer solutions, y has a large, if not dominant,
entropic (i.e., temperature-independent) part. In fact,
several theories exist that give explicit expressions for the
entropic contribution to y both in incompressible polymer
blends [9] and in compressible polymer solutions [12].
Schweizer and Curro [13] have used the RISM (refer-
ence interaction-site model) approximation [14] to esti-
mate the (purely entropic) y parameter of a blend of
hard-core, off-lattice polymers. The picture that we have
sketched above is not in conflict with any of these
theories. Rather, it provides a very simple and intuitively
clear explanation why the y of a polymer solution should
be expected to have a large entropic part.

Thus far, we have only discussed how, in lattice mod-
els, hard-core repulsion between particles of disparate
sizes may lead to phase separation. Although the exact
result that we have obtained applies to a lattice model,
the physical mechanism that drives such a demixing tran-
sition is also present in off-lattice binary mixtures: The
fraction of the volume that is accessible to the small par-
ticles increases when the large particles cluster.

In summary, we have demonstrated the existence of an
entropically driven demixing transition in simple hard-
core lattice models. By mapping hard-core mixtures onto
lattice models with nearest-neighbor attraction, we clear-
ly show how the entropy associated with hard-core repul-
sion may pose as an effective attraction. Although the
effect that we discuss is by no means the only example of
*“‘attraction through repulsion,” it may well be the sim-
plest.
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