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Combined Spin-Mass Vortex with Soliton Tail in Superfluid He-B
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We have observed spin-mass vortices (SMV) in superfluid He-B. The SMV is a combined topologi-
cal object made up of a vortex line with mass current and a disclination line with spin current. It is also
a termination line of a planar defect (I) soliton). The SMV's are bound either as pairs or to the con-
tainer wall by the soliton. They are nucleated when a rotating 3He sample cools slowly through the

B phase transition. The identification of the SMV is based on the NMR signatures of the soliton.

PACS numbers: 67.50.Fi

The existence of topologically stable objects is one of
the prominent consequences of broken symmetry in

condensed-matter and high-energy physics. The su-

perfluid phases of He are the extreme example of sym-

metry breaking and their rich topology harbors many
different types of defects [I]. Vortex lines can be stabi-
lized by rotation, and there is experimental evidence of
five different types: three in the A phase, which all be-

long to different topological classes, and two in the B
phase, which belong to the same topological class but
differ in the symmetry of their cores [2]. For other de-
fects in He there is no corresponding field, like rotation,
which could support their equilibrium, or at least quasi-
equilibrium, configuration. Examples of such objects are
planar defects (solitons), of which a few types may have

been identified in NMR experiments.
We present the first experimental evidence of a new

kind of topological object in He-8: the combination of a
vortex and a disclination. This linear object is also a ter-
mination line for a soliton, and thus an example of topo-
logical confinement of objects with different spatial di-
mensions. The topological stability of this hybrid of
linear and planar objects is based on the same principles
as that of a wall terminating on a string, or a string ter-
minating on a monopole, which arise in some models of
grand unification in particle physics [3]. Topological
confinement is also observed in liquid crystals; in particu-
lar, strings terminating on point defects are reported [4].
Because of the mixed vortex and soliton properties, the
triple hybrid of a vortex+disclination+soliton appears as
a highly stable structure in He-B, as depicted in Fig. l.

Topology. —To a good approximation, the symmetry
group of normal He is U(l)XSOP XSO3 . Here U(1)
is the gauge group, SO3 the group of spin rotations, and

SO3 the group of orbital rotations. In the superAuid
He-8, this symmetry is broken in such a way that only

the total rotation symmetry SO3( + ) remains [5]. Most
crucial is that the 8 phase is degenerate with respect to
both U(l) and the relative rotation of spin and orbit
parts. The latter will be denoted briefly by SO3. The
group U(l) can be parametrized by a phase N (defined

modulo 2n), and SO3 by an axis n and an angle 8 of rota-
tion.

The defects of the B phase can be classified simply on

the grounds of the U(l) x SO3 degeneracy. There are two

basically different linear objects. U(1) gives rise to a
conventional quantized vortex, where the phase
changes by 2z while encircling the line once. We call it a
mass vortex (MV) because mass flow circulates around
the line. Another type of linear defect corresponds to the
SO3 degeneracy. In the simplest model, the rotation an-

gle 8 changes by 2x but i stays fixed while encircling the
line. This object is called a disclination or a spin vortex
(SV) because there is a spin current around the line. As
distinct from a MV, a SV is equivalent to its antivortex
since the homotopy group trt(SO3) =Z2 consists of two
elements 0 and I with the summation law I + I 0 [6].

We have neglected above a small spin-orbit coupling
caused by the magnetic dipole-dipole interaction of He
nuclei. It lifts the SO3 degeneracy by favoring the angle
0=80=104'. Because this interaction is weak, it does
not aflect the high-energy structure of a SV, which is

characterized by the small core size (=0.01 Itm. It does

0

FIG. I. Schematic cross-sectional cut of the rotating NMR
cell after a slow A B transition. Mass vortices (open dots)
form a cluster separated from the cell wall by a counterflow lay-
er. Spin vortices, which are edge lines for solitons (grey), are
pinned on mass vortices to form spin-mass vortices (SMVs,
black dots). SMVs appear either within the cluster as pairs
bound by a soliton or on the periphery of the cluster with the
soliton terminating on the cell wall.
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modify, however, the low-energy, large-scale structure
characterized by the dipole length (ti = 10 pm. General-
ly the fixation of a degeneracy parameter related to a line
defect leads to the formation of a wall bound to the line.
Here the SV becomes a termination line to a so-called 0
soliton [6]. The topological structure of a SV and the as-
sociated soliton is shown in Fig. 2. On a path around the
SV line, the angle 0 remains equal to 00 outside the soli-
ton and only n changes. Within the soliton, 0 increases
from 104' to 180' and then decreases from 180' to 104',
but with opposite direction of n [7].

Stabilization. —Because of its surface tension, a soliton
tends to shrink. This makes a SV positionally unstable in

the bulk, unless it is pinned. The most intriguing alterna-
tive is to pin it on a MV. Because the superfluid state is
deformed within the vortex core, it is energetically more
favorable for a MV and a SV to form a common core.
Thus the resulting spin-mass vortex (SMV) is stable
against dissociation into a SV and a MV [8]. Whenever
a SV is created among MVs, it will likely be pinned by
one of the MVs. This triple hybrid, spin vortex+mass
vortex+soliton, may now be positionally stabilized by the
balance of two forces: The surface tension o of the soli-
ton can be compensated by the Magnus force acting on
the MV component of the hybrid. The Magnus force
F& trp, (v, —

i',„), arises if the superfluid velocity v,
=hV@/2m3 diA'ers from v„,the common velocity of the
vortex and the normal Auid. Here tr=zA/mi is the
quantum of circulation and p,, the superAuid density. The
stabilization is achieved in two different configurations.
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FIG. 2. Topological structure of the spin vortex (black dot)
with the soliton tail (grey). The arrows indicate the vector n8
on a path encircling the SV line. On the right, the rotation
group SO3 is parametrized by the vector nO: A solid sphere of
radius z has one-to-one correspondence with SO3 when diame-
trically opposite points on the surface of the sphere are
identified. The path around the SV is mapped to the closed
contour I &. The SV is topologically stable because I ] cannot be
continuously contracted to a point. The curved part of I [

comes from the region outside the soliton where 8 is fixed by
spin-orbit interaction to 00= l04 . The straight parts of I ~

come from the region within the soliton. In contrast to this
simplified figure, the lowest energy is obtained when all n orien-
tations are rotated by 90 in the plane of the paper (Fig. 4) [71.

0 supports in equilibrium N =nR n mass vortices, where
n =26/x is the vortex density. It is possible to generate
states with a smaller number of vortices in a controlled
way in He-B. Such states have all the vortices packed at
the equilibrium density in a central cluster with radius
Ri =R(Qi/0)' (R. Here Qi denotes the angular ve-

locity at which the cluster would expand to the container
wall. The cluster is isolated from the wall by an annular
layer which carries macroscopic counterflow of the nor-
mal and superfluid components: v,, —v„=Qi R~/r —Ar.
Consider now a SMV at a radial position r in the
counterAow layer and the soliton terminating on the wall
(Fig. 1). The balance o =FM gives, after trivial algebra,
the length of the soliton I =R —r:

i(n) ~s
R 2n

nv ns+0 20

where Qs =
/op, Rx. Using o =2.0go(o [7], where go is

the dipole constant, we obtain for our cell (R =3.5 mm)
that Os =0.05 rad/s is much smaller than a typical
Qi —I rad/s. Thus the SMV lies very close to the edge
of the vortex cluster and the condition for the stability of
the soliton is 0 & Qv+Q~ = Av.

In the second configuration, the soliton confines two
SMVs to a pair (Fig. I). From the outside it looks like a
doubly quantized M V. The distance d of the SM Vs in

the pair is determined by the balance between the repul-
sion of the MV parts and the attraction of the SV parts.
A repulsive Magnus force F~ =tr p, /2nd arises between
two parallel MVs. Because a SV is equivalent to its an-
tivortex, the force between SVs is attractive, and at large
distances (d»(D) it approaches the soliton tension o.
One then obtains an upper limit d~ x p, /2z owhich is
about 6(o close to T, This is less than the average spac-
ing between MVs in the vortex lattice (=200 pm at
0 = I rad/s). Thus d is expected to decrease only slightly
with increasing 0 when the SMV pair is placed among
the other vortices in the rotating liquid.

Experiment. —Our experimental cell is a cylinder of
radius R =3.5 mm and height L=7 mm rotating around
its axis (vertical). It is connected to the rest of the He
chamber only by a small orifice in the center of the bot-
tom plate. This suppresses the leakage of vortices from
the lower part of the He chamber to the NMR cell. The
critical velocity for the nucleation of He-B vortices in

the NMR cell exceeds 2.8 rad/s at 29.3 bars and
0.6T, & T ~ T~q. Velocities smaller than that were used
in the following.

The state showing evidence of SM Vs is produced as
follows. The cell is continuously rotated at a velocity
O~ .~. Initially, the liquid in the NMR cell is prepared
to be in the 8 phase with an equilibrium number of 8-
phase vortices. The B phase is maintained in the lower

part of the chamber. Then the 3-8 interface is gradually
allowed to rise during slow cooling, until the A phase is

replaced everywhere. The resulting B-phase state con-
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tains less vortices than a rotating equilibrium state. The
number of vortices was determined by comparing with
reference states of known number of vortices [9].

More surprisingly, the state after the 8 B transition
clearly differs from any reference state. The difference is
most prominent in a resonance mode peculiar to He-B,
which is called the homogeneously precessing domain
(HPD) [IO]. In this mode, both the magnetization M
and the rotation axis n precess uniformly around H. The
precession is homogeneous over the whole domain. M
and n are tilted from H by 104 and 90, respectively,
such that a rotation around n by l04' maps H to M/g (g
is the static susceptibility). In contrast, a static domain
(SD) has M gH and nllH. The HPD and SD can exist
in dynamical equilibrium when a field gradient VH is ap-
plied. The two domains are separated by a domain wall,
where M and n change smoothly.

The usefulness of the HPD lies in the absorption due to
spin diffusion, which is given by P=fdVD~V;M( . (We
neglect the tensor nature of the diffusion coefficient D.)
Thus the absorption is sensitive to regions where the mag-
netization is nonuniform, such as the HPD-SD wall, vor-
tices, and () solitons. In our case with a uniform
—VHIIHIIO, the wall is perpendicular to the axis of the
NMR cell. We monitor the total HPD absorption in a
cw measurement with the domain boundary adjusted to
lie just below the orifice of the NMR cell.

After the 2 B transition, the HPD absorption re-
veals an unstable state. It exhibits large absorption which
in some minutes decreases to a seemingly stable level.
This level is still 10-100 times higher than the absorption
due to all MVs and several times higher than the absorp-
tion due to the HPD-SD wall. This state withstands vari-
ous perturbations. For example, after the state has been
created at rotation velocity Az z, it can be studied also
at different velocities 0. Figure 3 shows the absorption
BP =Pi,t Po-o scanned as—a function of 0 after three
A B transitions. Two types of behavior are observed:
one is fitted well by a square-root dependence, P(0)
cx: I —(0„/0)'/ (solid lines in Fig. 3), while the other is
almost constant (dashed line in Fig. 3).

Large solirons —We associate. the square-root-type ab-
sorption with a "large" soliton bound to a SMV in the
counterflow layer. The main reason is that this explains
the 0 dependence of the absorption: A soliton gives rise
to absorption that is proportional to its area, P(0)
=P(~)l(0)/R, where l(0) is given by Eq. (I). Recal-
ling that Og is small, this is what is observed. Moreover,
the absorption extrapolates to zero when 0 is reduced to
a critical value 0,. This value coincides with Ai at
which the counterflow zone shrinks to zero, as determined
independently from a measurement of the number of vor-
tices in the cluster. The square-root absorption is irrever-
sibly lost once 0 is reduced below Oi. This is readily
understood because the vanishing counterflow permits the
solitons to annihilate at the side walls of the NMR cell.
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FIG. 3. HPD resonance absorption hP =PION PfI p plotted
as a function of rotation speed 0 as measured after three

B transitions. The pressure is 29.3 bars and field H 28.4
mT. The two examples on the left (Aa z 0.79 rad/s) display
only the square-root dependence given in Eq. (l) and are inter-
preted to have only solitons extending across the counterAow

layer, most likely two in both cases. The curves have been fitted
to the data and represent P(0)-P(~)[l —(0,/0)' I. Oy
has been determined from independent measurements of the
vortex number and agrees with O„within the combined uncer-
tainties. The third example (Oa g I.58 rad/s) we assign to a
state with one soliton across the counterflow layer (solid curve)
and three solitons inside the vortex cluster (dashed line and raw
trace). Spontaneous jumps at constant 0 l rad/s are shown

in the inset. Both the square-root curves and the horizontal
dashed line can be reversibly traversed up and down in 0 as
long as no jumps take place.

2.0

FIG. 4. Cross-sectional view of a 8 soliton embedded in the
HPD. Outside of the soliton, the magnetization M (solid ar-
row) and the rotation axis n (dashed arrow) precess as in the
bulk HPD. Inside, the soliton has a static structure with n per-
pendicular to the soliton wall and MIIH. These two regions are
separated by a HPD-SD wall. The planar soliton terminates in

a SMV line (dot).

There are other arguments in support of large solitons:
(i) Simple estimate of energy gives the following picture
of the HPD-soliton interaction, see Fig. 4. Instead of
penetrating into the 8 soliton, the HPD encloses the soli-
ton by forming two HPD-SD walls. The wall produces
absorption fdV D~V; M I -DM A/A, , where A is the area
and A, the thickness of the wall. For one soliton A 2IL.
The thickness of a free HPD-SD boundary is approxi-
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mately Ao =(c /y HVH) ', where e is the spin-wave ve-

locity and y the gyromagnetic ratio [10]. The pressure of
the HPD is greater inside the HPD than on its free sur-

face. Thus at a distance z & A,o from the free boundary,
the thickness of the boundaries covering the soliton
A, =ko z ' is smaller than A.o. This estimate explains
the order of magnitude of the HPD absorption and also
its observed (VH) 'i dependence.

(ii) The HPD-SD boundary can be moved along the
axis of the NMR cell by sweeping the magnitude of H.
The distribution of the absorption is found to depend on

the length h of the HPD as h, which follows from the
calculation above.

(iii) The experimental absorption appears to fall in

groups, which are derived with an integer multiplier from
a basic one. If these units are interpreted as individual
solitons, their number is usually 1-3 in the final state.
The decay of the initial state is understood by the annihi-

lation of solitons in collisions according to the summation
rule 1 +1 =0.

(iv) Besides the HPD mode, the ordinary NMR spec-
trum shows time dependence and frequency shifts expect-
ed of solitons.

(v) We do not know of any alternative explanation for
our observations. The soliton bound to a SMV matches
in a unique way with the observed stability and low

characteristic velocity A~. On the one hand, the soliton
is bound topologically to the SV and the binding between
the SV and MV is due to the high-energy (small-scale)
structure of the vortex core. On the other hand, the posi-
tion of the SMV is governed by much longer length scales
associated with the vortex cluster and the dipole interac-
tion. All other alternatives involve either a pure high-

energy structure (surface states, vortices) or a pure low-

energy one (n or 8 solitons without a SMV or metastable
n textures), and therefore do not show similar properties:
The former cannot explain the characteristic velocities in

Fig. 3 and the latter are wiped out by the HPD.
Small solirons. —The second type of the HP& absorp-

tion behavior P(A) is only weakly dependent on 0
(dashed line in Fig. 3). It shows up as a pedestal-like ex-

tension of the square-root curve when 0 is once reduced
below At . We associate this behavior with "small" soli-

tons bound to pairs of SMVs: (i) The size of a small soli-

ton is almost independent of 0, which explains the ab-

sorption P(O ). (ii) Because of an essentially linear

structure, the absorption IdVD~V;M~ —DM L is also
independent of VH, which is consistent with measure-

ments. (iii) Small solitons are not dependent on the pres-

ence of the counter[]ow layer. (iv) Downward jumps of
equal magnitude, or multiples thereof, occur in the ab-

sorption level during deceleration or sometimes spontane-
ously (Fig. 3). These are understood as annihilations of
small solitons. (v) The estimated ratios L:8/X oA /)
= 1:10:40of the absorption of a small soliton, HPD-SD
boundary and large soliton P(~) compare favorably with

the experimental ones 15, 50, and 500 pW, respectively
(T=0.7T,. , VH =5 mT/m, and H =14.2 mT). As many

as twenty small solitons have been counted in a vortex
cluster consisting typically of 500 MVs.

In conclusion, our NMR observations match the ex-
pected properties of 0 solitons. The existence of the at-
tached SMVs is implied by the stability and velocity
dependence of solitons. Thus a new class of topological
objects has been found to exist as a metastable state, and

the number of distinct vortices, which have been observed
in 'He-B, has increased from 2 to 3.
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