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Defect Energetics in Oxide Materials from First Principles
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We have made fully ab initio calculations on the energetics of defects in the oxide materials MgO and
Li20 using a parallel computing methodology. The calculations, based on density functional and pseu-
dopotential theory, yield results for the formation and migration energies of Schottky defects in MgO
and Frenkel defects in Li20 which are in excellent accord with experiment. The work gives new insight
into the defect-induced redistribution of valence electrons.

PACS numbers: 61.70.At, 66.30.Dn, 71.10.+x

We describe in this Letter calculations on the energet-
ics of defects in oxide materials performed entirely from
first principles, i.e., without adjustable parameters or
empirical interaction potentials. Specifically, we have
studied the Schottky energy and the cation and anion va-
cancy migration energies in MgO, and the Frenkel energy
and the cation vacancy and interstitial migration energies
in Li20. Our work builds on recent advances in the study
of the energetics of Si02 [1,2]. As well as making a
significant step forward in the ability of theory to treat
oxide materials, we believe our results provide a timely il-
lustration of the rapid progress in the first-principles
study of solids now being stimulated by parallel computa-
tional techniques.

Metal oxides have a wide-ranging importance in many
areas of physics, geophysics, chemistry, and technology.
Semiconducting oxides play a key role in devices such as
photovoltaic cells and gas sensors. Some of the most im-
portant minerals are oxides; MgO, for example, consti-
tutes around 10% of the Earth's lower mantle. In indus-
trial chemistry, a large proportion of the important cata-
lysts are oxides. Finally, we mention the important appli-
cation of oxides as high-temperature ceramics. In all
these areas, a key role is played by point defects, surfaces,
or interfaces. Point defects, the subject of this Letter,
govern the stoichiometry and hence the electronic proper-
ties of semiconducting oxides; defect diffusion determines
the electrical conductivity and influences the response to
stress in minerals and ceramics such as MgO. The im-
portance of being able to calculate the energetics of de-
fective oxides reliably is therefore considerable.

Past work on defect energetics in ionic materials has
generally been based on empirical interaction models,
which usually assume pair potentials between the ions,
with the electronic polarizability of the ions represented
by an empirical scheme such as the shell model. Al-
though this approach has had many successes, there is in-
creasing recognition of the need for support for the mod-
els from fundamental quantum-mechanical theory.

First-principles calculations on defective oxides are at
present very demanding, because one needs to treat sys-
tems containing at least tens of atoms. The present work
is performed within the framework of density functional
theory (DFT) using pseudopotentials [3]. To avoid sur-
face effects, periodic boundary conditions are employed,
so that the system treated consists of a periodically re-
peated supercell of ions and valence electrons. The
valence electron orbitals are represented by a plane-wave
expansion, including all plane waves whose kinetic energy
is less than a chosen cutoff energy. For some materials,
particularly the much studied group-IV elements and
I II-V compounds, point defects and surfaces have already
been successfully treated within the present approach [4].
Large repeating systems containing oxygen present sub-
stantial problems, due to the localized nature of the oxy-
gen valence p electrons which requires a very large num-
ber of plane waves in the expansion of the orbitals. The
use of plane waves (rather than, for example, a localized
basis set) is nevertheless highly desirable, because it
avoids bias, and because it allows the calculations to be
systematically taken to essentially complete convergence
with respect to the size of the basis set. The work on
Si02 mentioned above [1,2] has demonstrated the power
of the pseudopotential-plane-wave approach for oxide
materials, and has shown that with suitably constructed
pseudopotentials large enough systems for the study of
defect energetics can be treated [5]. The use of the
Kleinman-Bylander separable form of pseudopotential [6]
plays a key role in making such calculations feasible [1].

Our calculational approach resembles that pioneered
by Car and Parrinello [7]: The attainment of the elec-
tronically self-consistent ground state is treated as a glo-
bal minimization problem, in which the total-energy
functional is minimized with respect to the plane-wave
coefficients of the occupied orthonormal orbitals. We
perform the minimization by the very efficient conju-
gate-gradient technique developed by Teter, Payne, and
Allan [8]. An important feature of our calculations is
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that they have been performed on a parallel supercorn-
puter (a 64-node Meiko Computing Surface), using a
new parallelized code CETEP specifically designed for this
type of machine. The Car-Parrinello scheme is ideally
suited to parallel implementation. The basic reason for
this is that the total-energy functional is a sum of parts
which are local either in reciprocal space or in real space.
The calculations can therefore be distributed over almost
independently working processors, with each processor as-
signed to a particular region of either reciprocal space or
real space. Only transformation between the two spaces,
accomplished by fast Fourier methods, requires substan-
tial redistribution of data between processors; this is per-
formed by specially written communication routines. The
code will be fully described elsewhere [9].

We turn now to our calculations on MgO and LizO,
two simple and representative oxides (having the rocksalt
and antifluorite structures, respectively), which exhibit
two of the main kinds of defect disorder. In MgO, the
dominant defects are of Schottky type (cation and anion
vacancies), while in LizO they are of cation-Frenkel type
(vacancies and interstitials on the Li sublattice). Techni-
cal details of the ab initio calculations are as follows. We
use ab initio norm-conserving nonlocal pseudopotentials
[10] for Mg, Li, and O. The 0 pseudopotential needs to
be very carefully constructed if the number of plane
waves is to be kept manageable. This is achieved by the
recent optimization technique of Rappe et al. [11]. The
Mg and Li pseudopotentials do not require optimization,
and are constructed by the standard Kerker method [12].
All the pseudopotentials are applied in the Kleinman-
Bylander form [6], with the s-wave components local for
Li and Mg, and the d-wave component local for O. The
Monkhorst-Pack scheme [13] is used for Brillouin-zone
sampling. The exchange-correlation energy is evaluated
assuming the local density approximation (LDA) with
the Perdew-Zunger [14] functional form.

Tests on the perfect crystals show that total energies
(and energy differences) are well converged with respect
to the size of basis set at energy cutoffs of 1000 eV (and
600 eV), respectively. All our calculations use a cutoff of
at least 600 eV (corresponding to a basis set of roughly
15000 plane waves for a system of 32 atoms of MgO).
For repeated cells of eight ions or more, four sampling
points are enough to give well-converged results. We
summarize in Table I a comparison of calculated and ex-
perimental values for the equilibrium lattice parameter,
bulk modulus, and selected phonon frequencies of a MgO
perfect crystal. The very good agreement is typical of
that normally expected in modern pseudopotential calcu-
lations.

In MgO, cation vacancies are formed by the removal of
an Mg core, and anion vacancies by the removal of an 0
core together with eight electrons, so that the defects nor-
mally observed carry charges of —2e and 2e, respective-
ly. (Other more complex defects having different charge
states such as F centers and trapped-hole centers are also
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TABLE I. Calculated and experimental values of lattice pa-
rameter ao, bulk modulus B, and five phonon frequencies of
MgO. Phonon modes are the transverse optic mode at the 1

point and the transverse and longitudinal acoustic and optic
modes at the X point of the Brillouin zone.

ap (A)
B (Mbar)
TO(f ) (THz)
TA(X) (THz)
LA(X) (THZ)
TO(X) (THz)
LO(X) (THz)

Calcu lated

4. 17
1.54

12.39
8.65

12.57
13.24
16.36

Experimental

4.22"
1.55'-1.62"'

12.23"
8.96b
12.65
13.15b

16 61b

"'Cited by Chang and Cohen [51.
Reference [l8].

TABLE t I. Ab initio and experimental results for the
Schottky energy Es and the cation and anion vacancy migration
energies hE of MgO, and the Frenkel energy EF and the cat-
ion vacancy and interestitial migration energies h, E of Li20
(all energies in eV). All calculated results are for the 32-ion
system of MgO and 48-ion system of Li20.

MgO

Li20

Es
AE (cation vacancy)
AE (anion vacancy)
F.F
hE~ (cation vacancy)
AE (cation interstitial)

Ab i nitio

6.88
2.39
2.48
2.20
0.34
0.58

Experiment

2.2", 2.28'
2.42', 2.61"

58b 2 53b

0 40b 0 49b

'Reference [19]. ~Reference [20].

experimentally observable [15],but are not treated here. )
The Schottky formation energy in MgO is the energy re-
quired to form a well separated vacancy pair minus the
energy regained in replacing the removed ions and elec-
trons to form a new unit cell. The Frenkel formation en-

ergy in Li20 is the energy needed to remove an Li+ ion
and replace it on a distant interstitial site. The migration
energy of each defect is the (fully relaxed) energy barrier
that must be surmounted as the defect jumps from one
stable site to the next. For the vacancies, there is little
doubt that the relevant saddle point has the migrating ion
midway between the initial and final sites, and our calcu-
lations are based on this assumption. For the Li+ inter-
stitial, the situation is more complex. Empirical modeling
on many fluorite and antifluorite materials [16] indicates
that the interstitial migrates by the interstitialcy mecha-
nism, in which the interstitial moves onto a regular site,
simultaneously displacing its previous occupant onto a
new interstitial site; we have assumed this mechanism. In
calculating both the formation and the migration ener-
gies, relaxation of the ionic positions is extremely impor-
tant, and we stress that this is fully included in our calcu-
lations; details of the relaxation procedure and migration
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geometries will be given in a later paper.
Our defect energies are obtained from calculated

ground-state energies of systems having a single defect in

a large supercell. The issues involved in treating super-
cells for which the total charge of ion cores plus electrons
is nonzero have been investigated in earlier work [17],
based on empirical model potentials. It is well estab-
lished that the method yields defect energies which con-
verge rapidly with respect to the size of the repeated cell
provided (i) the net charge of the cell is compensated by
a uniform neutralizing background, and (ii) a correction
hE is applied to compensate for the residual Coulomb in-

teraction between defect images. The correction takes
the form d, E = —aq /2soR, where q is the net defect
charge, R is the lattice constant of the supercell, a is the
Madelung constant of the superlattice, and so is the static
dielectric constant of the bulk crystal. To support the
present work, we have made extensive tests on the calcu-
lation of defect energies in MgO and LiqO using empiri-
cal interaction models, which show that with the repeated
cells of 32 ions (MgO) and 48 ions (Li20) used here, the
periodic boundary conditions will introduce only small er-
rors. Details of these tests will be published elsewhere.

Our ab initio values for the defect formation and mi-

gration energies in MgO and Li20 are compared with ex-
periment in Table II. At present, reliable experimental
values for the Schottky energy in MgO and the intersiti-
tal migration energy in Li20 are not available. However,
for all the other energies the agreement with experimen-
tal values is striking. This strongly suggests that the cal-
culated Schottky energy in MgO is reliable, and indeed
that ab initio methods based on pseudopotentials and
LDA can be used to provide values for defect energies in

other oxides where experimental evidence is lacking.
Because the defects carry net charges, we expect them

to induce a strong polarization of the surrounding lattice,
and to distort the electron clouds on neighboring ions.
An understanding of such polarization effects is impor-
tant in assessing the validity of empirical models for the
energetics, such as the shell model. In order to display
these effects, we plot the defect-induced electron density
difference: the valence electron density in the defective
system minus the density in the perfect crystal. We
separate the electronic polarization effects from those due
to ionic relaxation by studying this difference with the
ions fixed on their regular sites. Figure l shows the den-
sity difference for the Mg and 0 vacancies in MgO. In
both plots, the prominent features represent the distortion
of charge density on the neighboring oxygen ions, which
is considerably more complex than the simple dipolar po-
larization that would be predicted by the shell model.
For the Mg vacancy, the valence electrons of neighboring
oxygens are repelled by the effective negative charge of
the vacancy. The figure shows that the charge redistribu-
tion is due mainly to the distortion of the oxygen p orbit-
als pointing towards the vacancy. The double peak-trough
structure arises from the shift of charge within the lobes
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of these orbitals. Around the 0 vacancy, an important
aspect of the electronic redistribution is the transfer of
electrons from the nearest oxygens to a spherical shell re-
gion covering the Mg neighbors of the vacancy. The
transfer is mainly from the p orbitals pointing towards
the vacancy, and this leaves a prominent quadrupole mo-
ment on the oxygen neighbors.
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FIG. 1. The response of the valence electron density to the
formation of (a) a Mg vacancy and (b) an 0 vacancy in Mg0.
Contours show the change of density (unrelaxed vacancy sys-
tem minus perfect crystal) on the (IOO) plane, in units of lO
electron per A3, with the interval between contours equal to 2.0.
Negative regions are shaded. Vacancies are at the coordinate
origin (axis scales in A); Mg and 0 ious are marked by crosses
and squares, respectively.
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In conclusion, we have performed fully ab initio calcu-
lations on defect energetics in two important oxide ma-
terials. The ability of such calculations to produce reli-
able results is demonstrated by the close agreement with
experiment for both formation and migration energies in

MgO and Li~O. We have also used the calculations to
study defect-induced electronic polarization in these ma-
terials and have found that polarization eAects are con-
siderably more complicated than would be expected from
simple models. Work on more complex oxides such as
AI203 is now under way. We believe that calculations of
the present kind will be an important source of informa-
tion for improving empirical modeling, as well as provid-
ing reliable values for defect energies which are not avail-
able from experiment.

The calculations reported here were performed as part
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burgh University. The project is coordinated by Profes-
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Professor D. Wallace, Dr. K. Bowler, Dr. S. Booth, Dr.
D. Bird, Dr. G. Ackland, and I. Manassidis. L.J.C. ac-
knowledges funding received under a SERC contract, and
J.S.L. thanks Dr. N. Troullier for stimulating discussions.
A. D.V. records the help he received from Dr. Xudong
Weng before the latter's untimely death in January 1991.
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