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Reconstruction of NaCI Surfaces from a Dipolar Solution to the Madelung Problem
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Based on the manner in which large Coulomb terms with opposite signs cancel each other at long

range, it is proposed that most ionic-crystal surfaces undergo a simple zero-temperature reconstruction, a
prediction validated by computer simulation of surfaces in rocksalt-structured materials.

PACS numbers: 61.50.—f, 68.35.Md

The classic Madelung problem, i.e., the divergence as-
sociated with the r ' term in the Coulomb potential of
condensed systems [1],and its consequences for the phys-
ics of ionic crystals and liquids have received considerable
attention throughout this century. The mathematical
problems associated with the handling of conditionally
convergent series have led to computationally expensive
summation methods which, based mostly on Ewald's solu-

tion [2], are now in common use for the simulation of ion-

ic materials. These problems have also given rise to a
widespread belief that certain "typically ionic" phenome-
na, such as the long-range charge ordering in ionic liquids
or the space-charge effects at ionic surfaces and inter-
faces, are a consequence of the long-ranged Coulomb in-

teractions. However, as evidenced, for example, by
Evjen's solution [3,4] and by extensive simulations of ion-
ic liquids [5], in many instances Coulombic effects seem
to cancel almost completely at long range. Here, by
describing a direct solution to the Madelung problem in-

volving shell-wise lattice summation over dipolar mole-
cules with integral ionic charges, we demonstrate that the
effective Coulomb potential in a perfect ionic crystal at
zero temperature decreases as r . In contrast with ear-
lier direct-summation solutions [6-9], this approach obvi-

ously requires a polarization correction [10] to obtain the
correct Madelung constant. It has the advantage, howev-

er, of avoiding (i) the assumption that the basis molecule
must have at least a vanishing dipole [6] or even higher
multipole moments [7-9] and (ii) the assignment of frac-
tional ionic charges to the summation unit [2,7,8]. These
simplifications are shown to lead naturally to the predic-
tion, illustrated here for the case of materials with the
NaCl structure, that most ionic-crystal surfaces should be
reconstructed at zero temperature.

The main difficulty in the evaluation of Madelung's
constant by direct summation arises from the fact that all
shells of the erystaI lattice are charged and that, there-
fore, it is virtually impossible to terminate the summation
in a way that renders the system as a whole neutral [4].
As illustrated in Fig. 1, this problem may be simply over-
come by summing over neutral shells of molecules, i.e.,
shells of the Bravais lattice with subsequent attachment
of the neutral basis molecule (such as NaCI, with charges

q). This results in the generation of two identical, op-
positely charged crystal lattices displaced relative to each

other by the basis vector b. The total "molecular"
Coulomb energy F.~,'~ of some ion i at the origin is then
given by

=~int '+Z &in(e (&. ),

+q -q
FIG. I. Dipolar shells of a Bravais lattice (schematic).

where the first term represents its "intramolecular" (i i')-
interaction while the second is the "intermolecular" in-

teraction of ion i with the molecules in shells with radii
r;~—=r,, (see Fig. 1).

Intuitively one would expect the double sum in Eq. (1)
to converge rapidly for the following reasons. Within a

given shell of the Bravais lattice (i.e., for a fixed value of
rrj), the values of I/rj —I/ry vary between positive (for
OJ') 90', see Fig. 1) and negative (for Oj'(90') because
the direction of b is fixed while that of r;J is averaged over
a discrete set of Bravais points on a sphere. In contrast to
a sum over charged shells of the crystal lattice (involving

very large ~ I/rj terms), Eq. (1) involves the averaging
over two types of very small differences. First, as in the
multipole expansion the differences 1/r;~

—1/r;J' within a
given shell are small compared to I/r;J. Second, when

summing these already small positive and negative dif-
ferences over Bravais shells, the weak correlation between
the directions of r;J and b which exists for small distances
(r;~ =b) is lost rapidly with increasing shell radius, thus
quickly averaging to zero,
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pole moment [6-9]. Thus, instead of viewing the NaCl
lattice as an fcc Bravais lattice with a dipolar basis mole-

cule, one could choose the simple cubic (sc) Bravais lat-
tice with the (NaCl)4 basis shown in Fig. 3. Having thus
avoided generating a long-range polarization of the sys-

tem, the direct Coulomb sum based on Eq. (I ) (in which,
however, dipolar molecules and shells are replaced by oc-
topolar ones) gives the Madelung energy directly, i.e.,
without the correction of de Leeuw, Perram, and Smith,
as shown in Fig. 4.

The comparison with the dipolar energy of Fig. 2
[corrected, however, according to Eq. (5)] demonstrates
that both sums converge equally fast and to identical
values. This suggests that the sum over octopoles may be
broken down into the contributions due to the four di-

poles 1-2 to 7-8 forming the octopole (see Fig. 3). As
seen from the values listed in Table I, summing the four

dipole potentials at the site of ion i reproduces, indeed,
the correct Madelung constant.

An interesting property of the direct-summation
method involving octopolar molecules is that the in-

tramolecular contribution (see Fig. 3),

E;„t,„(q/a ) [—6+3J2 —2/ J3]
= —2.91206(q /a), (6)

-3.46

-3.47-
~ oct. (sc}
+ dip. (ftx:}

is identical to that obtained from Evjen's method [3]
while avoiding the ambiguities associated with the assign-
ment of fractional charges to ions at different sites in the
crystallographic unit cell; moreover, its r convergence
behavior is identical to that of the Evjen sum [5]. There-
fore, while it appears that the direct dipolar sum repro-
duces Evjen's method (if an octopolar molecule is

chosen), it avoids some of the ambiguities of the latter, a
property particularly important when considering defect-

TABLE I. Determination of the Madelung energy of the
NaCl lattice as a sum of the potentials from four interpenetrat-

ing simple cubic Bravais lattices with the dipolar bases 1-2 to
7-8 sketched in Fig. 3.

Dipole

1-2
3-4
5-6
7-8

Total (EMad)

E",'i(q'/a)

—2.217 75
+0.74293
—1.010 15
—1.010 15
—3.495 12

ed ionic crystals (see below).
That a direct evaluation of the Madelung energy of the

NaCl lattice involving octopolar molecules is possible
merely with pencil and paper was pointed out also by
Lacman [9]. His "octopolar approximation" is based on

the fact that the interaction between complete octopolar
molecules decreases as r, . The above analysis demon-
s'trates that it is not necessary to consider the interactions
only between complete octopoles. Instead, while avoiding
the surface-dipole problem altogether, this approximation
follows from the more fundamental convergence behavior
of the summation involving dipolar shells of the Bravais
lattice.

Assuming that the destruction of the octopolar building
blocks adversely affects the rapid convergence of his octo-
polar Coulomb summation method, Lacman postulated
that all surfaces in the NaCl structure should be recon-
structed such that the finite crystal terminates with only
complete (NaCl)4 molecules. Shi and Wortis [11] have
recently used this idea to determine the finite-temper-
ature shape of NaCI-structured crystals. Unfortunately,
neither study considered the effects of lattice relaxation
[9,11].

Table II gives the fully relaxed zero-temperature ener-
gies of the three principal surfaces in NaCI and NiO for
both the atomically "flat" structure and the octopolar
reconstruction. These energies were determined both via

direct dipolar lattice summation (with a cutoff radius forI
-3.48-

C4

-3.49-
0$

-3.50-
UJ

-3.51-

NaC1

+ ~ ++ + Q+4J I

+~ + %I+I ~I~) I'

~ +

TABLE Il. Relaxed energies y (in mJ/m ) of octopolar and
flat surfaces (in parentheses) of NaCI and NiO simulated via

the potentials of Catlow, Diller, and Norgett (so-called type 2)
[12I and Stoneham and Sangster [13], respectively. For NaCI,
the unrelaxed energies y" are also given; these agree well with

values obtained by Shi and Wortis [I I] for the same potential.

-3.52
1.0

I I I 5 I I

1.5 2 ' 0 2.5 3 ' 0 3 ' 5 4.0 Surface
NaCl NiO

r /a

FIG. 4. Comparison of the energies of the octopolar (sc) and
dipolar (fcc) lattice sums. The latter is the same as in Fig. 2
(open symbols, left scale) corrected, however, according to Eq.
(5).

(IOO)
(llo)
(I I I)

223 (223')
367 (458 ')
541 (-)

225 (225)
384 (472)
693 (~)

1741 (1741)
2950 (3984)
4284 (~)

'These energies are slightly larger than those given by Tasker
[14I due to his use of the shell model.
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the Bravais shells of 3a) and by means of Ewald's

method, with no diA'erences in either the energy, the sur-
face stress, or the detailed atomic structure. Whereas in

the case of (001), the two structures are obviously identi-
cal (see Fig. 3), the lowering of the energy by octopolar
reconstruction, accompanied by a reduction in surface
stress, is considerable for the remaining surfaces. (The
unrelaxed geometries of these surfaces, both Aat and oc-
topolar, were discussed in detail earlier [9,11].) The
effect is particularly pronounced for the charged (111)
surface whose energy is infinite due to the long-range di-

pole moment in the (111)direction. By contrast, the oc-
topolar structure provides a simple thermodynamic
ground state that does not require point defects or kinetic
phenomena (such as the adsorption of impurities) for its
stabilization.

Concerning the physical reason for these reconstruc-
tions, however, we mention that, contrary to Lacman's
assumption, the convergence of the sum over octopoles is

not destroyed when the octopoles are broken up into neu-

tral fragments. Instead, the breakup will usually lead to
the creation of surface charges or dipoles and the associ-
ated energy increase. Based on this analysis one can ex-
pect the surfaces of all ionic crystals with a dipolar basis
molecule to be reconstructed in such a way as to elimi-

nate, or at least minimize, the surface-dipole problem.
The complete agreement with Ewald's method for the

case of free surfaces demonstrates that the direct dipolar
evaluation of the Coulomb energy is not limited to unde-

fected perfect crystals at zero temperature, while offering
hope that an extension to finite temperatures and, hope-

fully, liquids, may be possible. While its computational
efficiency as compared to Ewald's method would enable

the study of substantially larger systems, the surface
reconstructions predicted on the basis of its convergence
behavior promise to provide new insights into the basic
structure and properties of defects in ionic materials.
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