
VOLUME 68, NUMBER 22 PHYSICAL REVIEW LETTERS 1 JUNE 1992

Anomalous Ion Heating via Parametric Resonance in rf-Driven Plasma Sheaths
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A novel mechanism for strong ion heating inside magnetized sheaths, formed at plasma-wall interfaces
in radio-frequency-driven plasmas, is studied. The ion gyration frequency is modulated by the oscillating
charge density inside the sheath, resulting in a Hill-type parametric equation of motion. The gyration
velocity is unstable when the time-averaged gyrofrequency 0 is near a subharmonic nui/2 of the rf fre-
quency. Large energy absorption occurs within only a few gyrations because of the initial exponential
growth. Nonlinear saturation occurs at kinetic energies higher than the time-averaged potential dif-
ference across the sheath.

PACS numbers: 52.40.Hf, 52.20.Dq, 52.50.Gj

Sheath formation at plasma-boundary interfaces occurs
in a variety of situations, ranging from dc electric
discharges, to reactors for plasma processing, to mi-
crowave heating of tokamak plasmas. Sheaths generated
by rf waves around the Faraday shield bars have been the
subject of renewed interest, because of their importance
during ion cyclotron plasma heating (ICH). The steep
electrostatic gradients inside the sheaths can accelerate
ions to energies sufficient to cause sputtering of the shield
material [l,2]. This results in impurity influx and
deterioration of the plasma energy confinement time dur-

ing ICH, observed in the JET, TFTR, and Phaedrus
tokamaks. Although the sputtering problem is alleviated
with the use of low-sputtering-yield coatings (Be,B), the
parasitic energy absorption at the plasma edge can con-
siderably reduce the efficiency of the energy deposition in

the plasma core. The observed energy losses can be as
high as 30% in JET [3] and 50% in Phaedrus [4], when

the magnetic-field geometry and antenna configuration
favor sheath formation. Energy deposition and energetic
particle production inside the sheaths are also important
in plasma etching and plasma processing.

The studies so far on sheath dynamics greatly simplify
the ion motion by considering only the acceleration
parallel to the magnetic-field lines in the time-averaged
sheath potential @n(x)—=(@(x,t)). However, transverse
aeeelerarion by the oscillating rf fields inside the sheaths
can be equally important. This is particularly true in the
case of two-dimensional sheaths and magnetic lines al-
most perpendicular to the potential gradients. There the
ion guiding-center (GC) motion is mainly an Ex B drift
around equipotential surfaces, with only a small fraction
of the potential difference going to acceleration parallel
to the magnetic lines. This paper studies the transverse
ion motion in magnetized rf sheaths in considerable de-
tail. It is shown, by employing the "moving-plate capaci-
tor" model to describe the electric fields, that the ion
gyromotion obeys a nonlinear Hill-type parametric equa-
tion. The time modulation in the ion gyration frequency
O(t) =[0 —ni, (t)] '/, induced by the oscillating sheath
plasma frequency ro, (t) =(e/m;)dE(x, r)/dx, yields the
parametric dependence. In the linear regime, this equa-
tion demonstrates the well-known exponential instability

in the ion velocity when the time-averaged gyration fre-

quency 0—=(Q(t)) is near a (sub)harmonic of the rf fre-

quency. Of particular importance is the lowest paramet-
ric resonance cu/2 =0, characterized by a broad instabili-

ty band. This condition is met near the plasma edge be-
cause the frequency co for ion cyclotron heating at the
plasma core is higher than the ion cyclotron frequency
near the edge, m & 0 & O. Nonlinear saturation occurs
at gyration energies that can be higher than the dc sheath
potential and much higher than the thermal energy x T of
the ambient plasma. Because of the original exponential
growth, transverse acceleration allows strong energy ab-
sorption by ions within only a few gyroperiods, usually
within the sheath transit time.

The following approximations are introduced in order
to simplify the analysis and relate with previous studies:
(a) The one-dimensional electrostatic model is used for
the sheath fields. (b) A separation in time scales is as-
sumed in the ion motion. The one-dimensional sheath
model [5,6] yields a good approximation for the local
sheath structure across x when the sheath thickness h, in

the direction of the electrostatic fields is much shorter
than the sheath length L determined by the boundary di-
mensions. The electrostatic treatment is justified when 6
is much shorter than the wavelength of the main plasma
mode launched by the antenna, 5« vz/ro, where v~ is the
Alfven speed. The temporal scale separation assumes
that the gyromotion proceeds much faster than the GC
motion across the sheath potential. Since the GC velocity
across the sheath is determined by the tilting of the mag-
netic lines in the x direction, X-sin8(e@n/m;) '/ where
8 =tan (B„/8, ), the approximation is satisfied for
8«1. The above simplifications preserve the essential
features of the ion dynamics and are valid for the opera-
tional parameters of large tokamaks.

The moving-plate capacitor model is shown in Fig. 1.
An ion column of density n; fills the space between the
"unperturbed" plasma at x=0 and the sheath boundary
at x =h. An electron column of density n, is driven back
and forth between 0 and h, . The rectified rf potential is
contained in the space between x =3, and the moving
electron-ion interface at x=s(t). The model assumes
adiabatic electron response, implying local thermodynam-
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Vg where we have defined F(x,t)= (e—/m;)F(x, t). The left-

hand side of (4b) is the rate of change X of the guiding-
center location. For small 0, A' is much slower than the
characteristic time scale of (4a), and X is treated as an
adiabatic invariant X=——(y —Qx)/0 =Xp. The force is

split into a dc and an oscillating part,

s(t) E x

FIG. I. Illustration of density profiles in rf-induced sheaths.

F(x,t) =F o( x)+F(x,t),
m=c

F(x,t) = g F„,(x)cos(tot).

(5a)

(5b)

mi
cop; ln

e(x, t) =
0, x (s(t),

ax/5+ 1), x~s(t),

where the ambient ion plasma frequency to„; =4tre no/

m;. The ion equations of motion are

x+ Oy =cosoF(x, t),
y' —nx =sinOF(x, t),

(4a)

(4b)

ic equilibrium with @(x,t) and abrupt decay of the elec-
tron density within distance AD«A at the position s(t)
The ion density is determined by the guiding-center flow

along the magnetic lines under the time-averaged poten-
tial @0. The acceleration in the gyrovelocity does not
shift the guiding center across the magnetic lines and so
does not directly affect the ion density profile. The condi-
tions for the applicability of the moving-plate capacitor
model stay valid as long as pcos8«h. However, if the
ion Larmor radii expand to p-d within a sheath transit
time, enhanced ion transport will definitely aA'ect the den-
sity profile and the sheath voltage gradients.

The analytic expressions [5] for the time-averaged
sheath potential @p(x) and the ion sheath density n;(x)
are parametrized by the ratio of the potential difference
to the thermal energy H =(eV, /xT) 't, where V, =—@o(h)
—@(0). The same parameter equals the ratio of the am-
bient plasma density no=n;(0) to the sheath density at
the wall n;(6). For our purposes we mimic the monoton-
ic ion density profile by

n;(x)- (1)
ax 6+1

Numerical studies using the general profile n;(x)
=no(aux/6+1) 't~ with (= 2, —,', 2, 3, 4, and 100
demonstrated similar behavior as the case (=1, Eq. (1),
by choosing a~=0~ —

1 to ensure the same sheath poten-
tial to thermal energy ratio H . The oscillating electron
boundary is given by a triangular pulse

s(t) =~(1 —ltl/r), —r/2(t ( z/2,

where r =2tr/to is the rf period. The above approxima-
tions are easy to follow analytically and preserve the
essential underlying physics.

Using Poisson's equation, and Eqs. (1) and (2) for the
charge distributions of Fig. 1, the electric field F. (x, t)
= —8+(x, t)//Bx is given by

The Fourier coefficients obtained from (3) are given by

i)Fo x= to.,2(x) = top',
8x '

ttx+ 1

2 sin(mtrx) x
2mpi

Bx mtr ttx+ 1

(6a)

(6b)

where x=x/h. A strong Fp results inside the sheath
from the rectification of the harmonic driving potential,
and the oscillating part F contains only cosine terms [5]
from the even symmetry in s(t). Combining Eqs. (3) and
(4), expanding the fields (5) around the GC location X,
and shifting the origin of the coordinate system by AX
=Fo/(0 Fo) yields

ii + [0 —F'(X, t )]u =F(X,t ) + —,
' [F"(X)+F"(X,t )]u

where u =x —X and (') =d/dx
l „=x. The expansion is

valid for transverse excursions u smaller than the scale
length h of the field F, true for the injected-in-the-sheath
ions before acceleration takes place. In the absence of
the oscillating terms F, the homogeneous equation

u+0 u =0

describes the ion gyromotion inside the time-averaged
sheath potential. The gyrofrequency

(t22 2) I/2

u+62(t)u =g(u, t) . (10)

is modified by the time-averaged electric-field gradient
to, (X) =dFp/dX at the GC location [7]. The ion motion
is an ellipse with minor-to-major axis ratio M'/AY=(1
—to, /0 ) 't, around a guiding center located at X=Xo
and drifting along Y=Yp+(cFo/A)t The x excurs. ion is
enhanced by a factor (1 —co, /0 ) ' over the Larmor ra-
dius pp=up/Q. Note that for to, ~ t2 the orbit in the
time-averaged potential is unbounded, and the ions are
accelerated across the magnetic lines without completing
a rotation. We will focus on the case m, & 0, of more
relevance to the tenuous edge plasmas.

To study the full, driven response, Eq. (7) is recast in

nondirnensional variables, normalizing time to 0
length to the original Larmor radius po, and mass to the
ion mass m;, obtaining
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Equation (10) is the driven, nonlinear Hill equation for
an oscillator with time-varying eigenfrequency

b'(I) =I —e g f'(X)cos(mvr),

where v=ro/O. The eigenfrequency modulation comes
from the oscillating field gradients at the GC location,
8F(X,r)/8X, expressed in terms of the rescaled Fourier
coefficients f =F~—(X)/ro„; and the modulation ampli-

tude e=—ro„;/0 . The local sheath plasma frequency is

expressed in terms of the ambient rtt„; by ru, (X) rap,

xfo(X), and the modified ion cyclotron frequency by
[& —

rap, fo (X)] ' . The driving term

g(u, t) =e g [f„,(X)+ ,' f"(X—)u ]cos(mvt) (12)

contains the field E(X,I) at the GC location plus the
lowest-order nonlinear corrections.

The behavior of (10) has been extensively studied as a
model equation for parametric resonance phenomena. If
only the m =2 term is kept inside b(t), and when g(t)

0, it reduces to the well-known Matheus equation. The
.general theory for the linear stability [ignoring the quad-
ratic terms u in (12)] relies on the Floquet theory to
prove the existence of instability zones at driving frequen-
cies mv ' =2/n, i.e., 0/co=mn/2 The .width of the un-

stable bands depends on the modulation amplitude e=p/
(I —frIp)'/, where p—=ro„;/0, and the Fourier ampli-

tude f„',(X). Each Fourier coefficient f creates a se-

quence of resonances at v ' =mn/2. Many Fourier
coefficients m' contribute to a given resonant v
=m'n'/2 with various n' The d.ominant contribution for
a given v ' comes from n=1, v '=m, i.e., the direct
subharmonic v ' =m/2, and has a frequency width of
order e. Contributions from n & 1 scale as e . Figure 2
sho~s the first three unstable frequency bands v

1, —', as functions of ro„;. Ten harmonic coefficients f
have been included in the calculation for each band, fol-
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lowing the approach described in Ref. [8]. The boun-

daries of the parametric instability, without the driving

term g on the right-hand side, of (10), are given by the

solid lines. Inclusion of the driving terms further expands
the unstable region.

The parametric resonance v=2, with the rf frequency
co nearly twice the modified gyrofrequency 0, is of par-
ticular importance for ICH. It is easily satisfied in edge
plasmas where co & 0 & A. Typical ion trajectories from

the numerical integration of the full equations of motion

(2) are plotted in velocity space t„=u and t~ =Au in

Figs. 3(a) and 3(b). The sheath parameters are h/po
=32, ro„;/0 = I, the GC location Xo =6/2, and initially

v,0=0, v, ,o= l. The exponential gyrovelocity growth is

evident in the unstable case v 2.0, Fig. 3(a), and the ki-

netic energy increases over 200 times within 10 gyrations.
The Larmor radius at saturation is comparable to the
sheath thickness. In contrast, the trajectories for v=2. 15
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FIG. 2. Instability bands in frequency Ii/r0 vs ambient ion

plasma frequency for GC located in the middle of the sheath
+=a/2.
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FIG. 3. Typical particle trajectories in velocity space for (a)
ro 20 and (b} ra=2 150. The .GC location is at X=A/2 and

the elapsed time is about 10 rf periods.
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outside the unstable band, shown in Fig. 3(b), show no
instability. The gyrovelocity v(t) =(v z+ viz) 'iz oscillates
periodically in time. The average (v(t)) is comparable to
the motion in the time-averaged field, Eq. (8), and no net

energy absorption occurs.
The unstable frequency bands are plotted against the

GC position in the sheath X=X/6 in Fig. 4, for ambient
plasma density cop, =2 0 . The rf frequency for the
lowest resonance v ' =

2 lies in the interval 20 (1
—

—,
' ) 'i2 ( ra ( 2A as the sheath plasma frequency varies

from to, =0 at X=O to ta,, =to„;(—', ) 'i at X =A. When to

falls in the above interval, the resonance condition will be
met at some X as the ionic guiding center drifts along the
tilting in the x-direction magnetic lines. Actually, be-
cause of the large resonance width, shown in Fig. 4, the
majority of the sheath ions will spend most of their life in

the unstable region when 1.50 (co(20. The transit
time through the resonance is given in terms of the reso-
nance width 6'-6 by r, =A'/sin8(e@n/2m;) ' . For typ-
ical edge parameters @0=400 V, B=1 T, no=10'
cm, and h, '-6 =3 & 10 ' cm, the transit time is larger
than a gyroperiod for sinai&0. 30. Because of the ex-
ponential growth, a significant energy boost occurs within

only a few gyrations in the unstable regime. The impor-
tance of rf effects in parasitic edge plasma heating is

strengthened by two-dimensional effects in the sheath

F1G. 4. instability zones in frequency rtlta vs GC location

insidg the sheath pt p& =2Q

structure. It has been observed numerically and argued
theoretically [9] that for small 8 the ion GC executes a
cross-field drift near equipotential surfaces, rather than
flowing along the magnetic lines. Only a small fraction of
the sheath dc potential difference can be absorbed into
acceleration parallel to the magnetic lines in this case.
Most of the observed energy absorption must be attribut-
ed to the rf interactions.

The initial exponential growth for small u is eventually
reduced by the nonlinear terms. A two-time scale ap-
proach can be used to analyze Eq. (10) in the nonlinear

regime letting u =Ucost with U slowly varying. Multi-

plying both sides by cost and averaging over the fast time
scale shows that nonlinear saturation (f(u, t)cost)=0
occurs at U-[2f(X)/f"(X)]'i -A. The dc potential of

the sheath is estimated from (6a) to be less than
—,
'

tap, h /a. The gyration energy, using v, , =Oh at y=0,
is & 0 h, . Particle energies can exceed the dc sheath po-
tential when a) to„;/0 . The initial exponential growth
indicates that the thermal velocity region lies in the
neighborhood of an unstable fixed point. The orbits fol-
low the unstable manifold (separatrix) around large size
island(s) (bu-hO). The motion at large U may still be
nonintegrable, as (10) lacks an obvious time invariant.
However, the energy absorption takes place in a slower,
random-walk manner, which is not as effective within the
sheath transit time as the initial exponential acceleration.
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