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The dynamics of transverse particle oscillations in the Fermi)ab Tevatron, artificially made nonlinear,
is studied by observing beam profiles over periods up to an hour. A "diffusive" model with amplitude-
dependent diffusion coefficient gives a quantitatively accurate description of beam evolution. The evolu-

tion is influenced strongly by nonlinear resonance.
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This Letter describes a beam dynamics experiment,
performed in the Fermilab Tevatron, that studied the
effect of nonlinearity on transverse particle distributions.
As well as being the study of an almost ideally Hamil-
tonian system, this investigation was motivated by plan-

ning for future accelerators, for which nonlinearity in the
transverse motion will be of special importance. These
effects are studied by adding artificial nonlinearity to the
most similar existing accelerator, the Tevatron. For this

experiment the Tevatron can be regarded as a linear sys-

tem on which known nonlinearity in the form of sixteen
sextupole magnets has been artificially superimposed. (In
an earlier experiment using the same apparatus [1]
phase-space features were measured quantitatively in a
nonlinear configuration similar to the present one. ) We
concentrate here on "stochastic" effects, due to the parti-
cle dynamics, that cause "diffusive" evolution of the
beam distribution even in the absence of external sources
of "noise" or random scattering from residual gas mole-

cules.
At the start of each observation period a needle-shaped

single bunch of some 10' circulating stored protons was

kicked horizontally. This yielded displacement xk (typi-
cally 3 mm) as observed at a downstream observation
point. The resulting transverse beam profile was deter-
mined by measuring the instantaneous radioactivity as a
fine wire was caused to fly through the beam repeatedly
every minute or so. During a run of (typical) duration 30
min, each proton circulates some 10 times and executes
some 2 x 10 transverse "betatron" oscillations. The pur-

pose of the kick is to generate a beam in which all the
particles are in a region of measurably large diffusion.

Individual protons oscillate at approximately constant
amplitude with damping time equal to many tens of
hours. The assumptions of Hamiltonian mechanics are
probably as valid for this system as for any laboratory-
observable phenomenon. One consequence of this is the
certain validity of Liouville s theorem, according to which

microscopic particle densities in phase space are con-
served. The phase space referred to here describes mo-
tion in one transverse dimension (horizontal), with posi-

tion and momentum coordinates being (x,p). In this pa-
per the momentum is scaled to have the same units as x
(millimeters), so that unperturbed phase-space trajec
tories are circles of radius r—=JJ =(x +p ) 'I . Because
of Liouville s theorem, an initial beam distribution de-

pending only on r (except for distortion due to nonlineari-

ty) would remain invariant. In spite of this, it is con-
sistent with Liouville's theorem for void regions to be
mixed into populated regions yielding a "foam" of re-
duced macroscopic density. That is the behavior studied
in this experiment.

Two configurations, labeled A and 8, were investigated.
For them, individual sextupoles had the same strengths
but the distributions of their polarities were selected to
lead to strikingly different phase-space structure. For
two "tune" settings at each of A and 8 the predicted
phase-space trajectories are shown in Fig. 1. These are
"Poincare plots" taken at a fixed location ("surface of
section") in the lattice, with a point plotted at the point
(x,p) on each successive turn. (The tune is the fraction
of 360' that successive points advance on each turn in

such a plot. ) The plots in Fig. 1 were generated by a
symplectic numerical tracking program TEAPOT [2] using
the known linear lattice and sextupole configuration in

the Tevatron. As well as trajectory distortion, there is the
possibility of "frequency entrainment" onto resonance is-
lands (cases A & and 8 &), and, at very large amplitude,
particle loss due to the vacuum chamber wall or another
material object. To make the physical aperture definite,
a scraper was placed at x =8 mm. This value was
chosen small enough to be certain to catch essentially all
"doomed" particles, but large enough to make the obser-
vations insensitive to the actual value of x . Both of
these properties were verified experimentally. Though
the precise location of this aperture is not critical, the loss
of particles it causes is crucial to the evolution and sur-
vival of the beam.

In order to study the influence of resonance (though
not the dominant strong third integer resonance) all mea-
surernents were performed in the vicinity of the "& reso-
nance" (fractional horizontal tune v, close to 0.4). This
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FIG. l. Predicted Poincare plots for the four nonlinear
configurations studied. Identical starting coordinates were
chosen for all plots. A and B indicate different sextupole distri-
butions; & and & refer to just below and just above the dom-
inant resonance. Note the five-island resonance chains in the
& cases. Other parameters are listed in Table I.

similar to, but not identical to, the radial heat equation in

a cylindrically symmetric situation. (The difference is in-

34

means that the motion approximately repeats every fifth
turn. Configurations were intentionally chosen in pairs,
such as 8 & and 3 &, just above and just below reso-
nance, respectively, with everything else held constant.
For both sextupole distributions under study the tune de-
creases with increasing amplitude. This causes entrain-
ment to occur, with the fractional tune locking onto ex-
actly &, only in the & cases. This is confirmed by Fig.
1. With the fractional tune so close to 0.4, resonances at
other rational tune values are of minor importance.

The particle distribution in phase space is approximate-
ly described by a symmetric probability distribution de-
pending only on r, not separately on x and p. For a brief
interval after the beam is first kicked this is not true, but
within less than 10 turns (negligibly short on the time
scale of our observations), "filamentation" due to shear
tangential motion leads to a distribution that uniformly
fills a ring of radius xl, in phase space. We call a beam
formed in this way a "hollow beam. " The same rapid
shear motion in phase space continues to preserve azimu-
thal symmetry even if the stochastic forces are asym-
metric. It was shown by Landau [3] that the influence of
stochastic forces on a distribution of Harniltonian oscilla-
tors can be described by a one-dimensional diffusion
equation

r)p, (J;r ) t) Bp, (J;r )

consequential. A complete reanalysis based on the heat
equation was just as satisfactory as the fit we describe. )
Here D~(J) is an amplitude-dependent diffusion coeffi-
cient to be determined by data fitting. The distribution
function pj(J;t) is normalized to the intensity N(I)—the
total number of particles surviving at time t, which we
measure. Before the beam is kicked it has a Gaussian
profile with a rms width oo that was measured at the start
of each run. The condition for the beam to be truly hol-
low is cro&&xj,-. In actual cases o.0=1.1~0.1 mm and
xj, & 2.4 mm. Our apparatus measures the projection of
this distribution onto the x axis. This profile is compared
to a theoretical profile obtained by solving Eq. (I) numer-
ically and projecting onto the x axis.

The evolution of beam profiles in electron storage rings
in the presence of stochasticity caused by quantum fluc-
tuations as well as damping due to radiation would un-

doubtedly be correctly described by a similar partial
differential equation, though the standard treatment [4]
is rather diAerent.

Our model of the diAusive evolution is based on a
four-parameter expression for the diffusion coefficient:

)
Dg , if r "C I'p, '

D, (J) =
Dy+dp(J Jp), if rp ( I'.

(2)

The most important parameter is ro =Jo, which can be
regarded as a phase-space radius inside which there is no
dynamics-induced diffusion (a kind of experimentally
determined radius of the largest Kolmogorov-Arnold-
Moser surface). Since the particle density is tailored ini-
tially to be large only in a reasonably slender radial ring,
the diff'usion coefficient is best determined near there. At
larger amplitudes, other than being required by the data
to be large, the diA'usion coefficient is poorly determined.
I n the particular parametrization chosen, the rate at
which diffusion increases as r exceeds ro is controlled by
the coefficient do and the exponent K. The parameter Dy
represents uniform diff'usion, such as could be caused by
external sources of noise, but it was allowed to vary from
configuration to configuration. Model profiles are ob-
tained by solving Eq. (I) with the diffusion coefficient
given by Eq. (2), with boundary conditions that forbid a
sink at J=0 and force a zero at r =x . Resulting
profiles are shown in Fig. 2. The smooth curves are
profiles predicted at the times indicated. The jagged
curve is one raw profile measured by the flying wire sys-
tem. It is typical of the hundreds of profiles measured.
The jagged nature of these profiles was somewhat
smoothed before comparison with the model; this ac-
counts for the jagged curve being somewhat narrower
than the smooth curve predicted at the same time.

In performing fits to determine the parameters in D~,
only two measures of the observed distributions were
used —the total area, proportional to N(r), and the full
width at half maximum. For each of the configurations
studied, data sets like those in Fig. 3 were taken. Pairs of
small-kick and large-kick runs were taken, diff'ering only
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TA BLE I. DiA usion coelcient parameters.

Parameter Kicks
units (kV) V.x dp

ro
(mm)

Dg

(mm'/min) ro/a

A)
B(
B)

6,9
6,9
6,9
6,9

20.392
20.408
20.392
20.408

215 ~ 2.4
118+ 2. 1

9.0+ 0.33
160+ 4.8

488+ 0.02
3.90+ 0.02
3.40 w 0.02
3.54 ~ 0.04

1.19+0.01
1.68 ~ 0.01
1.88+ 0.01
1.30 ~ 0.02

4.7+ 0.01
2.9+ 0.02

0.87+ 0.01
3.0+ 0.03

0.42
0.44
0.51
0.51

evolution was described by the same diffusion coefficient
and the model profile in existence at that time. These fits

are unfortunately very sensitive to small uncertainties in

the absolute scraper location. A 1.3-mm discrepancy be-
tween nominal and best-fit values was judged to be con-
sistent with absolute position uncertainties in the setup.
With this adjustment, the excellent fits to the 6-kV data
of Fig. 3 result. However, without parameter readjust-
ment, the 9-kV full-width fit is not very good. The source
of this discrepancy is not understood. It is also not un-

derstood why the best-fit value of Df varies from con-

figuration to configuration.
For comparison with Fig. 1, the final column of Table I

gives the ratio ro//3. ; A=(x~,. „—xm;„)/2, where xm;„and
x~,. „arethe extremes of regular motion along the x axis.

The discussion has assumed that the motion is purely
horizontal. In fact, individual particles are also undergo-

ing appreciable vertical oscillation at a tune of v, , =20.45.
Before being kicked the beam is approximately round and

the kick does not alter the vertical motion. As a result,
the beam is ribbon shaped after the kick with relatively
small vertical motion. However, it cannot be assumed
that horizontal diffusion is uninfluenced by this motion.
Our diffusion coefficient has to be regarded as including

this influence. The same comments can be made about
longitudinal motion (v, =0.0016). In addition, because
the flying wire is located at a point HE11 having nonzero

dispersion, the momentum oscillations accompanying this
motion broaden the observed profiles slightly. To study
this effect we performed a complete reanalysis of the

data, approximately taking this into account; the altera-
tion was judged to be too small to justify the extra com-

plexity. In summary, our diffusion coefficient is intended

to account phenomenologically for the evolution of hor-

izontal profiles in the presence of small vertical and longi-

tudinal motion.
Qualitative inferences about the nature of the diffusion

process can be tentatively drawn. Contrary to intuition,
and unlike multiple scattering, diffusion causes the beam
to narrow with time. This behavior is caused by the sink

at x which devours large-amplitude particles, reduces
the beam intensity, and depletes the tail of the distribu-

tion. The feature of the data most naturally demanding a
diffusive description is the enormous range of time scales
involved. At small amplitudes the time scale is so long
that diffusion can be neglected; the time scale at large
amplitudes is negligibly short. The full range is smoothly
encompassed by dependence (2). The hollow beam rap-
idly (in 10 turns) sheds its large-amplitude particles and
the periphery of the distribution approaches what appears
to be a universal shape. This is stable indefinitely except
that weak diffusion occasionally brings particles to the
"edge" from where they quickly "evaporate. "

The calculations of Fig. 1 can be compared with the
experimental data, parametrized according to Eq. (2),
and listed in Table I. The near constancy of the ratio
ro//3. shows that theory and observation are consistent.
As a rule of thumb, based on this ratio, one can conjec-
ture that diffusion causes particles outside roughly
(0.47~0.04)A to be lost rapidly. (The "realistic aper-
ture" is about half of the "optimistic aperture. ") Rela-
tively greater diffusion in case A & than case A & is made
manifest by a small value of rp. Relatively greater
diffusion in case B & than case B & is made manifest by a

large value of dp. Both suggest that the diffusion rate is

enhanced by proximity to resonance. Certainly it is rou-

tinely observed that beam loss in accelerator operations is

aggravated by resonance.
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