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Quantum Noise Reduction in a Spatial Dissipative Structure
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We give the quantum-mechanical formulation of a model which predicts the onset of a spatial dissipa-
tive structure in a nonlinear optical system. ln the case of roll patterns, we show that the two signal
beams which constitute the pattern are correlated twin beams, i.e., their intensity diAerence exhibits
Auctuations belo~ the standard quantum limit.

PACS numbers: 42.50.Dv, 42.65.—k

Even if ordered spatial structures in dissipative non-

linear systems have been objects of study for a long time
(see, e.g. , [1,2]), their analysis has remained confined to a

purely classical description. On the other hand, optical
systems lend themselves naturally to a quantum-me-
chanical treatment and to the prediction of quantum
eA'ects, for example, squeezing [3,4]. In this paper we

provide a quantum-mechanical description of the model
of nonlinear optical system given in [5], and predict the
existence of a purely quantum phenomenon in a spatial,
stationary dissipative structure. This work establishes
also, for the first time, a link between the field of trans-
verse patterns [6] and of quantum noise reduction [3,4] in

nonlinear optical systems, both of which have attracted a
lively interest in recent years.

We consider a ring or a Fabry-Perot cavity of length L
containing a medium with a cubic refractive nonlinearity
(Fig. 1). A coherent, stationary, plane-wave field Et with

frequency coo is injected into the cavity in the longitudinal
z direction. We assume conditions such that only a longi-
tudinal mode of the cavity contributes to the electric field

[7], which therefore has the form E (x,y, t )u (z)
~exp( —impt)+c. c., where x and y are the transverse
coordinates, and u =exp(ik -z), k =. 2trn:/L fo-r a ring
cavity, u =cos(k-z), k.- =trn /L in the cas-.e of a Fabry-
Perot cavity (n- is a large positive integer). The envelope
E obeys the equation [5]

the following set of equations for the modal amplitudes
~n-

de„=Et'„,0 e„(1+—i &l„i)+ig e*+„-„ee„,
d I

'
n'm

~here an asterisk denotes complex conjugation and

Ol„i=8+PTn, PT =4tr a, n =n, +n, , ;

(3)

(4)

the structure of the cubic term in Eq. (3) manifestly
preserves the transverse wave vector. Equations (I) and
(3) admit transversally homogeneous stationary solutions
e„=e,8„0,which obey the steady-state equation [9]

The linear stability analysis of this stationary solution,
performed in [5], reveals the existence of a steady-state
bifurcation which leads to the formation of various sta-
tionary patterns, as, for example, rolls (stripes) [5] or
hexagons [10]. These structures are closely similar to
those found in the case of counterpropagating waves in a
cavityless Kerr medium [11].

A quantum-mechanical formulation of the model is

provided by the following master equation (ME). Let us

= —E+Et +iE (IE I
—0) +iaV ~E,

where t =kt, with k being the cavity linewidth, and 0 is

the detuning parameter; we have assumed a self-focusing
nonlinearity. In order to avoid diSculties arising from a
continuum of transverse modes, we consider in the trans-
verse plane (x,y) a square of side b and we assume
periodic conditions for E. Hence E has the form [g]

E(x,y, t) =pe„(t)exp(ik„x), (2)

where x=(x,y), n—= (n„,n~), k=2trn/b, n„,n~=0, ~1,
~ 2, . . . . The parameter a and the transverse Laplacian

V~ in Eq. (1) are given by a =c/2k, kb, V& =|I /Bx
+rl /8y, where c is the light velocity, x=x/b, and

y=y/b By inserting E.q. (2) into Eq. (1), one obtains FIG. l . (a) Ring cavity and (b) Fabry-Perot cavity.
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iittcl (Qo Qti), Hii =~ elnlonan,t ~ t (8a)

r

fgg fO

dxdy[A t(x,y)] A (x,y), (8b)

where ai =EI/goi, and A is proportional to the field en-

velope

Hlni =

A (x,y) = g a„exp(ik„x).1

The parts H,„i,Ho, and H;„idescribe the pump field, the
free evolution of the modes, and the mode-mode interac-
tion, respectively. By using Eqs. (6)-(9) one can derive
the time evolution equations for the mean values en(t)
=goi (a„)(r),and one verifies that in the semiclassical
approximation (i.e., neglecting the quantum fiuctuations
and correlations) these equations coincide with Eqs. (3).
In the case that Eq. (I) is derived from a two-level model

[7], the explicit expression of the coupling constant gti is
2C/63N„where C, d, and N, are the bistability parame-
ter, the atomic detuning parameter (A(0 is the self-

focusing case), and the saturation parameter, respective-

ly.
In order to obtain some useful results from the ME, we

base ourselves on the link with the problem of oscillatory
instabilities in the longitudinal modes of a ring cavity.
Precisely, in [12] we considered a ring cavity containing a
two-level system (with purely radiative damping), and
driven by a coherent field. Contrary to the case of this

paper, we assumed that the electric field does not depend
on the transverse variables x and y, and that the atomic
line excites several longitudinal modes of the cavity;
therefore the envelope E depends on z and on the time.
In the limit of adiabatic elimination of atomic variables
and of large atomic detuning (A~, we derived a ME which

governs the interaction of the longitudinal modes. The
analysis of [12] was limited to three modes; however, the
ME obtained there can be generalized in a straightfor-
ward way to include all the longitudinal modes, and turns
out to coincide with Eqs. (6)-(9), provided the transverse
length b is replaced by the longitudinal length L, I is re-
placed by z, the two-component index n is replaced by a
one-component index n=0, + 1, . . . , and PT in Eq. (4)
is replaced by PT=8C(irc) /( h)(Ly~) . The mean—

denote by p the density operator of the multimode sys-

tem, and by a„and a~t, the annihilation and creation
operators of photons, respectively, for the cavity modes.
The ME reads

dp =+A„p— [H—,p],
d~ n

where the Liouvillian A„is given by

Anp [anp, an]+ [an.pa„),
and the Hamiltonian H is the sum of the three contribu-
tions

values gtii (a„)(t)obey the same semiclassical equations
(3); the steady-state equation (5) and the linear stability
analysis remain unchanged. However, in this case the
amplitudes of the longitudinal modes are given by
e„(t)=exp[ i (—2nnc/L)t]goi (a„), and therefore the
structures which arise in the unstable domain are not sta-
tionary but oscillatory, even when (a„)is time indepen-
dent.

Next, let us come back to the problem of transverse
modes, and let us consider the simplest case of rolls, as-
suming for definition that the roll pattern develops in the
x direction. The experimental observation of rolls is re-
ported in [I lc]. Close to the critical point ~e, [ =I (see
Ref. [5]), the dynamics is governed by the pump mode
n =0 and by the two signal modes which become unstable
at the critical point, i.e., n (n„,0) and n=( n„,—0),
where n„is such that (2irn„) =2 —() (see Ref. [5]). Sig-
nal and pump beams are shown in Fig. 2(a) for the case
of unidirectional propagation (ring cavity). If we label

by 1,2, 3 the three modes n 0, n = (n„0), and n
=(—n„0),respectively, and write explicitly the interac-
tion Hamiltonian (8b) for the three modes, we obtain
that H is given by the sum of the three contributions

3

HsFM- g (a ) a;,f22
i I

HCPM fkg0[QI Qi0202+gigiQ3a3+a2a2g3g3),t t t t t t

HFWM 2itgp4iQ2&3+H. c.],

(1oa)

(Iob)

(10c)

2 Signal

1 Pump

3 Signal

(b)

FIG. 2. Pump and signal beams in a roll pattern: (a) ring
cavity and (b) Fabry-Perot cavity.

where HsFM, HcpM, and HFwM describe the processes of
self-phase modulation, cross-phase modulation, and four-
wave mixing, respectively. The four-wave mixing pro-
vides the gain which primes the onset of the dissipative
structure. In this problem the two signal beams have the
same frequency, contrary to the case of longitudinal
modes [12). The three-mode problem for the ME (6)
with the Hamiltonian (8) coincides exactly with that
studied in [12]. For example, in [12] we calculated the
steady-state equations which describe the multimode sta-
tionary solutions.
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FIG. 3. Spectrum of the quantum fluctuation in the intensity

difference between the two signal modes.

have been obtained by exploiting an "equivalence" be-
tween the problem of transverse stationary pattern forma-
tion and that of oscillatory instabilities in the longitudinal
modes of a ring cavity.

Left for future work is the investigation of some other
quantities which may show quantum noise reduction, as,
e.g. , the fluctuations of the intensities of the two individu-
al signal beams, or of the sum of their intensities, or of
the sum of their phases, or of the intensity of the pump
mode. Very interesting work also would be to identify
quantities, directly related to the near field pattern, which
exhibit quantum noise reduction. A possibility might be,
for example, the local transverse intensity distribution in

the roll pattern.
%e thank G. Grynberg for a helpful discussion. This

research was carried out in the framework of the

ESPRIT BR Actions TONICS and QUINTEC.

Let us now focus on a genuine quantum-mechanical
quantity, namely, the spectrum of the fluctuations in the
intensity difference between the signal beams of the roll

pattern. This quantity has been already calculated in

[l 2] for the corresponding longitudinal three-mode prob-
lem. The result is

S(to) =I —4k /(tip +4k )

and is graphed in Fig. 3. Therefore one has fluctuations
below the shot noise level 5 = I (standard quantum lim-

it), and the reduction of quantum noise in the intensity
dtfference becomes complete for zero frequency [S(0)
=0]. Equation (1 I ) coincides with the expression of the
spectrum of the intensity difference between the signal
beams in the optical parametric oscillator [13]. This re-
sult demonstrates the quantum correlation between the
two beams, which for this reason are usually called "twin
beams. "

In our case, however, the two twin beams propa-
gate along different directions and in the far field the sig-
nal beams are spatially well separated (Fig. 2). In the
case of a Fabry-Perot cavity, we must take into account
that there are four signal beams, as shown in Fig. 2(b),
and that the annihilation operator a2 (aq), refers simul-

taneously to the beams 2 and 2' (3 and 3'). Therefore the
function S(to) corresponds to the spectrum of the I]uctua-
tions in the difference between the total intensity of the
beams 2+2' and the total intensity of the beams 3+3'.

In conclusion, we have demonstrated for the first time
the existence of a quantum feature in a spatial dissipative
structure. This feature is the quantum-mechanical corre-
lation of the two beams which correspond to a roll pat-
tern, so that they behave as twin beams. One can expect
that similar correlations can exist also in the case of more
complex patterns as, e.g. , hexagons. Therefore the order
which characterizes these spatial dissipative structures
also affects the quantum-mechanical level. Our results
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