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Binding Energy of Positronium Chloride: A Quantum Monte Carlo Calculation
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The binding energy of positronium chloride is calculated using a model potential for the ten core elec-
trons and the quantum Monte Carlo method for the eight valence electrons and the positron. The result
is 1.91+0.16 eV. Except for three- and four-particle systems, this is the first accurate calculation of the
binding energy of a compound containing a positron.

PACS numbers: 36.10.Dr, l4.60.Cd, 3 l.20.Dj, 82.55.+e

Compounds containing a positron in addition to elec-
trons and nuclei are important in several areas: surface
studies, ceramic and doped C6o superconductors, radia-
tion chemistry, many-body quantum mechanics, voids in

polymers and molecular crystals, mass spectrometry
(especially of biologically significant compounds), etc.
[I]. In spite of their importance, our knowledge of their
binding energies is extremely sparse. No direct measure-
ments have been reported, although very recent progress
has been made [2]. Except for the present work, accurate
quantum mechanical calculations have been applied only
to two-, three-, and four-particle systems.

Positronium chloride (PsCI) is an atom consisting of a
chlorine atom combined with a positronium atom. It is
stable compared to separated CI and Ps atoms. Its
ACAR (angular correlation of annihilation radiation)
spectrum has been observed in aqueous solutions of
chloride ions [3-5], graphite-intercalated chloride com-
pounds [6,7], and chloride-doped polyacetylene [8]. The
observed ACAR curves agree closely with that calculated
from the Hartree-Fock wave function for gaseous PsC1
[9] (although adding waters of hydration to the calcula-
tion degrades the agreement somewhat [10]). None of
this experimental work gives an indication of the magni-
tude of the binding energy —just its sign. An assertion
has been made that the PAL (positron annihilation life-
time) spectrum of chlorine gas and of argon-chlorine gas
mixtures gives the Ps-Cl bond strength as 2.0+0.5 eV
[I I]. Experimental evidence supporting this assertion
was not given [11,12].

Theoretical evidence that PsCl is bound was provided
in 1953 by Simons, who calculated a positronic orbital in
the fixed field of a chloride ion represented by a Hartree-
Fock wave function [13]. Simons' calculated Ps-Cl bond
energy was 0.59 eV, which is a lower bound. This calcu-
lation was repeated some years later with a more modern
chloride wave function, with similar results [14]. Cade
and Farazdel added full self-consistency, which increased
the calculated bond energy slightly to 0.73 eV [15,16].
These calculations omit two important sources of stability
for the system: polarization and correlation. The first is a

long-range effect and can be adequately treated in a very

simple way by including a polarization potential term in

the Hartree-Fock equation for the positron.
Correlation is a short-range effect and is much more

difficult to treat by conventional quantum mechanical
techniques. The purely electronic correlation energy
amounts to about 20 eV [17]. The PsCI binding energies
quoted in this paragraph are compromised because they
rest on the assumption that the electronic correlation en-

ergy in CI is the same as in PsC1.
The polarization effect in PsCI has been treated in

several one-particle model potential calculations to vari-
ous degrees of accuracy [18-21]. The most recent of
these calculations gives a binding energy of 1.40 eV [21].
However, the model potential for Cl is parametrized by
calculations on three small systems: (e+,H) and (e+,
He), both unbound, and PsH, which is bound. It is not
clear that these small systems serve as a reliable guide to
the properties of a many-particle system such as PsCI.

Correlation and the quantum Monte Carlo method.—The crucial role of electron-positron correlation in cal-
culating energies and annihilation rates has been stressed
[22]. Calculations using wave mechanics and the Ritz
variational principle are exceedingly difficult owing to in-

tegral evaluations, and to date have been carried out with

good accuracy only for the three-body systems PsH [23]
and Ps2 [24]. The quantum Monte Carlo (QMC)
method is comparatively very easy to use, and gives an
accuracy limited only by computer time.

We choose a method which combines a model potential
(MP) for the K- and L-shell electrons and the QMC
method, a procedure we designate as MP-QMC. This
method recently yielded the electron affinity of Cl as
3.617~0.198 eV [25], compared to the experimental
value of 3.615 eV. An added positron probes the outer
regions of Cl, so inaccuracies in the core potential are
less important. Therefore, MP-QMC yields a reliable en-

ergy for the system PsC1, from which the bond energy is
obtained with much greater accuracy and rigor than is
given by any previous work. This is the subject of the
present Letter.
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TABLE I. Parameters in Eq. (2).

BI;

TABLE II. Valence energies of Cl and PsC1 vs time steps.
Statistical uncertainties are indicated in parentheses. All num-

bers are in atomic units.

1.428 57
39 751.4

—10.8414

5.896 50
27

8
Time step Cl'

Energy
PsCl

Aecommodati ng the positron. —The procedure used
here is the same as for Cl and Cl previously reported,
[25] and is not repeated. Instead, we describe only the
changes made to add a positron to Cl

We take the Hamiltonian for PsCI to be

0.01
0.005
0.0025
0.001 25
0.0b

'From Ref. [25].
Extrapolated.

—14.924 80(316)
—14.912 22(402)
—14.91 2 42 (342)
—14.91097(342)
—14.908 86(349)

—15.187 09(459)
—15.208 24(462)
—15.218 82(463)

—
1 5.229 40(465)
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a(i) for i odd,

1 P(i) for i even.

are Hartree-Fock orbitals for the 3s and 3p electrons
of Cl [26], a and P are the usual spin functions, A or-

thogonalizes and normalizes, and pp, the positron orbital,
is either r e ' or r e '" (normalized) with a being
determined by fitting (r") averaged over pp for n = —1, 1,
and 2 to values given by Farazdel [27]. These two

choices for pp gave almost identical results for the Ps-Cl
bond energy. For the first choice above, a =0.66.

where N, . is the number of valence electrons (i.e., the
eight 3s and 3p electrons), D is the diffusion coefficient
h /2m„, and VMp(i) and VMp (p) are model potentials
for the ith electron and the positron, respectively, in-

teracting with the ten core electrons. VMp(i) is the same
as used previously. VMp (p) is taken to be

Z —A, . K

VMp'(p) = '1+ g Btr""ek p
~p / =1

where N, is the number of core electrons (ten in this
case). The parameters Bt, pt, and pt are obtained by
fitting the expression on the right above with

W, /2——2 Q J(rp),
~p j in core

by a least-squares minimization procedure. Jt(r) is the
Coulomb potential at r generated by the jth core orbital,
which are given by Clementi and Roetti [26]. A fit
within the width of a line on a plot of the two functions is
achieved for the number of terms K equal to 3. The
values of the parameters are given in Table I.

The importance function is taken to be of the form [22]
IV,,

+T above does not include the core electrons, but oth-
erwise it has correct cusp values for the attractive particle
pairs, and therefore is a good representation of the proba-
bility density in important regions of space.

Valence energies of Cl and PsCl for different time steps
are given in Table II. These are extrapolated to zero time
by a linear weighted least-squares fit. The weighting fac-
tor for each point is I/bt(bE), bt, and bE being the time
step and statistical uncertainty in the energy, respectively.
The difference of the extrapolated energies less 6.8 eV,
the binding energy of Ps, is the bond strength of PsC1.
We find this quantity to be 1.92 0.16 eV. This is in

fairly good agreement with the most recent model poten-
tial result, 1.40 eV [21], and in excellent agreement with

the older estimate from the annihilation rates of positrons
in Clq and Ar-C12 gases [11]. The latter agreement is

probably fortuitous.
The uncertainty in our result, 0.16 eV, rejects the sta-

tistical fluctuations inherent in the QMC method. There
may be small systematic errors common to all the ener-
gies given in Table II arising from errors in the model po-
tential, nodes of the importance function, etc.

I n view of the absence of rigorous previous work, either
experimental or theoretical, we believe our result is much
more reliable than any other reported to date.
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