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Maximal Violation of Bell Inequalities for Mixed States

Samuel L. Braunstein, A. Mann, and M. Revzen
Department of Physics, Technion Israel I—nstitute of Technology, M 000 Haifa, Israel

We show that mixed states can produce maxima1 violations in the Be11 inequality due to Clauser,
Horne, Shimony, and Holt (CHSH). This follows from the degeneracy of the operator which is
naturally associated with the Bell inequality (here called the Bell operator). We have calculated the
form of all the eigenvalues for the generic CHSH Bell operator. Finally, we consider several examples
which demonstrate the utility of studying the eigenva1ues and eigenvectors of the Bell operator.

PACS numbers: 03.65.Bz

The concept of local realism [1] is that physical systems
may be described by local objective properties that are
independent of observation. Bell [2] showed that the as-
sumption of local realism had experimental consequences,
and was not simply an appealing world view. In par-
ticular, local realism implies constraints on the statis-
tics of two or more physically separated systems. These
constraints, called Bell inequalities, can be violated by
the statistical predictions of quantum mechanics. For a
very broad class of Bell inequalities these statistical con-
straints may be written as a locally realistic bound Pr,R
on the expectation value of some Hermitian operator I3
(which we call a "Bell" operator), i.e. ,

(8) & Pr.R

We say that quantum theory predicts a violation of this
Bell inequality if for some state this expectation value
exceeds the bound Pr,R. In the language of operators the
largest violation will be given by the largest eigenvalue
of this Bell operator; and further, the states which can
produce this maximal violation will be either eigenstates
with this largest eigenvalue, or perhaps mixtures of them
if they are degenerate. In this paper we construct exam-
ples where maximal violation is given by such mixtures,
and we demonstrate the utility of the language of eigen-
values and eigenstates for this class of Bell inequalities.

The most commonly discussed Bell inequality is the
Clauser-Horne-Shimony-Holt (CHSH) inequality [3]:

—2 & C(a, b) + C(a, b') + C(a', b) —C(a', b') & 2, (1)

where a and a' are two-valued (+1) variables for the first

system, and b and b' are similar variables for the sec-
ond system. The function C(a, b) represents the corre-
lation between a and b for the two systems —quantum
mechanically it is given by (ab) with a and b, Hermitian
operators on Hilbert spaces 'H and 'Hb corresponding
to a and b, respectively. Because their eigenvalues must
be k1 these observables satisfy

=a =b =b' =I,2 "&2 2 I2
(2)

are bounded in magnitude by 2v 2. In our notation the
CHSH Bell inequality becomes —2 & (BCHsH) & 2.

A straightforward application of Eq. (2) shows [5] that

~cHsH = 4I —a, a' b, b'

The consequences of this equation are rather surprising.
If we go to bases where these commutators are diagonal,
so that

~ A A / ] ~

t a, a = dhag(cq, c2, . . . , cD(~l),

i b, b' =diag(dq, dq, . . . , d~(b&),

where I is the identity operator.
Cirel'son [4] first proved that the absolute value of

the combination of correlation functions in Eq. (1) is
bounded by 2~2 for any quantum mechanical calcula-
tion, instead of the 2 predicted by local realism. This
means that the eigenvalues for the Bell operator

BcHsH = a (5+ 5') + a,
'

(b —b')
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with diag(ci, c2, . . . , c~( l) representing the diagonal ma-
trix with diagonal elements ci,cz, . . .,cD( l, and D(a) and

D(b) are the dimensions of Hilbert spaces 'H and 'Hb,

then the eigenvalues p, ,~ of the square of the Bell opera-
tor BGHsH are given by

Pi~ = 4 + Cid~

with i = 1, . . . , D(a) and j = 1, . . . , D(t&); similarly, the
eigenvalues A,~ of the Bell operator BcHsH are given by

A,~
= +gp, ~

= k/4+ c,d~ .

Cirel'son's bound is just equivalent to limits on the prod-
ucts: —4 ( c,d~ ( 4.

Jl

Consider the subspace of eigenvectors of 8&HsH with
some given eigenvalue p, . To be specific we choose these
eigenvectors as the outer product of states from 'R~ and
'Hb —the natural choice as BGHsH is diagonal here. In

A

what way are the eigenvectors and eigenvalues of BGHsH
within this subspace inherited from those of BGHsH7 In

general, the eigenvectors of BGHsH are linear combina-
tions of the original eigenvectors, they are "entangled"
as opposed to product states, and their eigenvalues are
A = k~p. We now show that if these eigenvalues
correspond to a violation of the CHSH Bell inequality

(i.e. , IAI ) 2), then both signs must appear, i.e. , both
A = +~@, and A = —v&p, appear. Suppose, to the con-

trary, that only one sign appears among all the eigenvec-
tors of BGHsH with this given magnitude v) p, () 2). Since
the entire subspace is degenerate we can choose these
eigenvectors as the original product state eigenstates of
BcHsH. However, this is impossible as product states
cannot produce a violation; they allow the correlation
functions to factor, i.e., (at&) = (a)(b). When both signs

appear, however, we are no longer free to "untangle" the
eigenstates of BGHsH. Interestingly, this appearance of
both signs for the eigenvalues is only necessary for those

eigenstates which could lead to a violation.
Equation (3) has other implications as well. If either

of the commutators i, i' or b, b' iszerothen theeigen-
values become just +2, so the expectation value (BGHsH&
is bounded by the locally realistic limits, i.e. , the vio-
lation goes away. further, if both commutators vanish
then all eigenstates of this "classical" Bell operator can
be chosen to be product states with perfect correlations
(or perfect anticorrelations) for each of the four corre-
lation functions C(a, b), C(a, b'), C(a', b), and C(a', b'),
i.e. , in the "classical limit" there "really are" locally ob-
jective properties for each particle. Finally, if neither
commutator vanishes then, since the trace of the com-
mutators is zero (i.e. , P, c, = P, d, = 0), we must have
some of the c,d~ ) 0, and the corresponding eigenvec-
tors will produce violations. Thus, for any CHSH Bell
inequality based on noncommuting observables for both
systems it is always possible to construct a state which
will yield a violation (though not necessarily maximal).
We now consider a few examples.

To simplify our discussion for the first two ex-
amples we restrict our attention to cases where the
Hilbert space dimensionalities are equal and even, i.e. ,

D(a) = D(b) = 2n, and further, that the two-valued ob-
servables have a simple block-diagonal form in some bases
in terms of the 2 x 2 Hermitian matrices A, , A', , B,, and

8,' (i = 1, . . . , n), i.e. ,

a, = diag(A&, A2, . . . , A„),
with the square of each block being the identity to satisfy
Eq. (2), and similar expressions apply for a', 6 and b'

Example 1: We make the choices [6]

Az = crx, A', = cry,

B, = ~(cr, + cry), 8, = ~(cr —cry),

in terms of the Pauli spin matrices. The Bell operator
then takes the form

BGHsH = v 2 diag(cr». . . , cr~) ~ &3 diag(o ~, . . . , o ~) b + v 2 diag (o„,. . . , o„),&3 diag(oy ~ ~ ~ o''y) p

= ~2 diag (o ~ o ~ + cry cry, . . . , o ~ &3 o ~ + o y cr„),sb .

The Bell operator is seen to be highly degen-
erate, having n~ duplicates of the eigenvalues of
v 2(o~ &3 cr~ + oy &3 cry); in particular, the eigenvalues are
A = +2v 2, 0, and —2v&2 with multiplicities of 1/4, 1/2,
and 1/4, respectively, of the 4n~ eigenstates of the opera-
tor in Eq. (6). The eigenstates are also easy to enumerate;
if we label our chosen bases for 'R and '8& by the vectors

I1, T&, I1, I&, I2, T&, I2, l&, , In, T&, In, j.&,

then each vector will stay in a two-dimensional subspace
if acted upon only by the block-diagonal observables.
With the bases labeled in this way the eigenvectors of
~CHSH are

the eigenvalues for IO, . ) are zero, and those for I@,. )
(+) (+)

are +2v 2, respectively. Clearly, any mixture of the

I4,+ ) states will still yield a maximal violation of +2~2,
similarly for mixtures of the I4, & yielding a violation
—2~2.

Example 2: We take Ai, A&, Bi, and B& as given in

Eq. (5), and all the rest as the 2 x 2 identity matrix I
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In this case the CHSH Bell operator becomes

8CHsH = diag(o, I, . . . , I) (SI diag(v 2o', 2I, . . . , 2I)b + diag(o„, I, . . . , I) I3 diag(v 2o„,0, . . . , 0)~

= diag
~

v 2(o~ I3 o~ + o„ I3 o„),2o. I, ~2I ts (o + o„), 2I I,~J ag
n —1 copies n —1 copies

n —1 copies

The first four eigenvalues are 0, —2v 2, +2v 2, and 0,
and the rest consist of only +2 and —2 with multiplicities
4n(n —1) and 4(n —1), respectively. Thus, in this case
no mixture can yield a maximal violation.

Example 3: Finally, we consider the Bell inequality
recently discussed by Mermin [7) for n spin-z particles
which yields a violation increasing exponentially with n.
The Bell operator associated with his scheme is given by

8M = —. (o' +io~) — (o' —ta')
2l 4 1 4 h

X Q ~ ~
Z 'g

j=l j=1

= —z2" +S3

j=i
S2

j="i j

("
82 22(n-1) Pj +M +

where s~+ and s are the raising and lowering operators
for the jth particle. Using this notation we may summa-
rize Mermin's Bell inequality as

—2"/ ((8M) (2", n even,
2(~—~)/~ ( (8M) ( 2(~-~)/z n odd

By defining the projection operators P+~ = s~+s~ and
P~ =—s~ s~+ which project particle j onto the positive
and negative z axes, respectively, we can easily see that

—2" ~. This enumeration of the eigenvalues of 8M shows
that the maximal violation will be produced by the state
]4'(+)) studied by Mermin (and also by [4( ))).

We have shown that mixed states can produce maximal
violations in the CHSH Bell inequality. We constructed
an example of arbitrarily high Hilbert space dimension-
ality for which one-quarter of the Hilbert space forms
a subspace of degenerate eigenstates of the Bell opera-
tor with eigenvalue +2+2, another quarter is degenerate
with eigenvalue —2v 2, and the remainder is degenerate
with eigenvalue zero. We proved that the general struc-
ture of the CHSH Bell operator implies that each Bell
inequality violating eigehvalue (i.e. , having magnitude
greater than 2) must come in both signs. Also for any
CHSH Bell inequality based on noncommuting observ-
ables for both systems we can always construct a state
which will produce a violation (though not necessarily
maximal). Finally, we have shown that the recent Bell
inequality discussed by Mermin attains maximal viola-
tion for just the state he discusses.
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The eigenvalues of this squared Bell operator are eas-
ily found in this diagonal representation: There are two
equal to 2 &" ~ and all the rest are zero. The nonzero
eigenvalues correspond to two eigenvectors of 8M,

I@'+') = ~ (I t'1' " t') + ~i ll "1))

]4'(+)) with eigenvalue +2" and ]4'( )) with eigenvalue
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