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In a general class of one- and two-dimensional Hubbard models, we prove upper bounds for the two-

point correlation functions at finite temperatures for electrons, electron pairs, and spin. The upper
bounds decay exponentially in one dimension, and with power laws in two dimensions. The bounds rule

out the possibility of the corresponding condensation of superconducting electron pairs, and of the corre-
sponding magnetic ordering. Our method is general enough to cover other models such as the t-J model.

PACS numbers: 71.28.+d, 75. lO. LP

The Hubbard model and its variants have been attract-
ing considerable interest. Rigorous results, however, are
still rare. In one dimension, the Bethe ansatz method has
been successfully applied [I] both to the ground state and
to the finite-temperature Gibbs state. In general dimen-
sions, Lieb's theorem [2] and Nagaoka's theorem [3] on

the ground-state structures are known. In one and two
dimensions, Ghosh [4] proved the absence of magnetic or-
dering at finite temperatures.

In the present Letter, we extend McBryan and
Spencer's method [5] developed in classical spin systems
to a general class of Hubbard models in one and two di-

mensions, and prove upper bounds for various correlation
functions at finite temperatures. The bounds rule out the
possibility of magnetic ordering and condensation of elec-
trons or superconducting electron pairs such as Cooper
pairs or rl pairs [6].

We consider a tight-binding electron model on the
one-dimensional lattice tt'. or the square lattice Z [71.
The Hamiltonian is given by

H = — g g t„,,c, c~, + V([n, [)
.~, yez ~

+ g h„S„(d = 1,2),

with the number operators n =c c„and the spin

operators SJ =p „=tlct xt„c„„(j=1,'2, 3), where rt„
are Pauli spin matrices and c~,c„arethe creation and

the annihilation operators, respectively, for the electron at
site x with spin o. The Hermitian hopping matrix (t„~,) is

arbitrary, except for the conditions that there are finite
constants t, R, and ~t„,, ~

~ t holds for any x,y, and t„y is

vanishing [8] for )x —y( ~ R. Note that we can include
an external magnetic field which is represented by com-
plex t„Theinte, .raction V({n I) is an arbitrary func-

tion of the number operators, and h represents local
magnetic field or spin-flip impurity. Note that the Ham-
iltonian (I ) is not necessarily completely isotropic in spin

space, but has a global O(2) symmetry related to the spin

rotation about the z axis. We stress that the class of
Hamiltonians considered here includes not only the well

studied models like the (standard) Hubbard model or the

)((ct let les lc,, I+ H.c.)) )
~ 2(x —y)

(((c'~, +H.c.))) «2)x —y)

(2)

for any finite P and for any x,y with sufficiently large
~x —y(. If the local field has the form h„=(0,0,h„)we

further have

)(S,'Sr'+S„'S,l)) ~ )x —y( (4)

for any finite P and for any x,y with sufficiently large
~x

—
y~l. In a one-dimensional model, we have the above

hounds (2), (3), and (4) with the right-hand sides re-
placed with 2exp[ —yf(/j)~x —y~], 2exp[ —yf(2P)lix
—y)/2], and exp[ —yf (P) ~x

—y ~], respectively.
The above bounds rigorously rule out the possibility of

the corresponding condensation of electrons or electron
pairs and of the corresponding magnetic ordering. The
bound (2), for example, inhibits the condensation of sing-
let electron pairs such as the Cooper pairs or the g pairs
[6]. However, our method can be easily extended to rule

out any kind of condensation which is related to a spon-
taneous breakdown of the quantum mechanical global

periodic Anderson model, but also many of their variants
with, e.g. , long-range, random, or spin-dependent interac-
tions.

To define the Gibbs state, we replace the infinite lattice
with a finite lattice of linear dimension L with periodic
boundary conditions. The thermal expectation value of
an arbitrary operator 3 is defined by (A)t. =Tr(Ae S )/
Tr(e s ) where the trace is over all the electron states.
We consider the infinite-volume state defined by (A)
=limt . (A)t. with the electron density fixed to p. Our
result is independent of p and thus applies to grand
canonical averages as well.

The main result of the present Letter is the following.
Theorem. —There exist finite constants [9] a, y, b and a

function f(P) which depend only on the hopping matrix

(t„,, ) The f.unction f(/3) is decreasing and behaves as
f(/j) = I/P for P»b and f(P) = (2/b)(lnP( for P«b'. In

a two-dimensional model in the class described above, we

have
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U(l) symmetry. It is also straightforward to extend the
method to cover other systems such as the Hubbard mod-
el with a nonlocal spin-flip term or the t-J model [10].
The explicit upper bounds for the correlation functions
provide further information about the propagation of
electrons, electron pairs, and magnons. The astonishing
generality of the theorem, especially the complete arbi-
trariness of interactions, may be regarded as a sharp
demonstration of the fact that the electron hopping plays
a fundamental role in various condensation phenomena in

itinerant-electron systems.
The power-law-decaying upper bounds in the theorem

are certainly not optimal at high temperatures, where one
generally expects to have exponential decay. Even in low

temperatures, a class of models which are suSciently
close to the antiferromagnetic Heisenberg model is ex-
pected to show exponential decay. Among the varieties of
models covered by the theorem, ho~ever, one might well
find those which exhibit "exotic" phase transitions lead-
ing to power-law decay. It is notable that the power in-
dices in the upper bounds (2), (3), and (4) are propor-
tional to P

' at low temperatures. This means that the
slowest possible decay in these models is of the
Kosterlitz-Thouless type. In one dimension, the exponen-
tially decaying upper bounds in the theorem provide
upper bounds for various correlation lengths. The
bounds, which are proportional to P

' at low tempera-
tures and to (InP( at high temperatures, reproduce a typi-
cal crossover behavior of correlation lengths in one-
dimensional tight-binding electron systems.

Our proof is based on the method developed by
McBryan and Spencer [5] for classical spin systems, and
on its extension to quantum spin systems by Ito [11]. In
these works, the global continuous symmetry of the spin
space played an essential role [12]. Our strategy here is
to make use of the global U(1) symmetry related to the
quantum mechanical phase. In this approach, we do not
have to make further assumptions on the symmetry of the
system since the U(1) symmetry exists in any quantum
particle systems. We believe that the present method can
be extended to a much larger class of quantum particle
systems. In the present Letter, we restrict ourselves to
the lattice fermion problems, which are free from ultra-
violet divergence.

The absence of magnetic ordering in one and two di-
mensions was proved by Ghosh [4], who extended the Bo-
goliubov inequality method of Mermin and Wagner [13].
We note that, by combining the Mermin-Wagner argu-
rnent with the idea to make use of the quantum rnechani-

cal U(l) symmetry, one can also prove the absence of
condensation of electron pairs (or electrons). To do this,
one should replace the operators A and 8 in [4] with the
Fourier transforms of the number operator n =n t+n
and of the order variable O„=c„,(c„,t (or c„),respec-
tively. We also note that the Mermin-Wagner argument
can be extended to cover non-translation-invariant models
as those considered here.

In what follows, we describe the proof of the bound (2)
in detail. We first prove the bound in a finite periodic lat-
tice of linear dimension L, and then take the limit
L . To make use of the global quantum mechanical
symmetry, we note that the U(l) gauge transformation is

represented by the unitary operator

G(8) =+exp[ —i8„n,, ], (5)

where 8={8„}is an arbitrary real function on the lattice.
In the following, however, we let H„bepure imaginary, in
which case the operator G(8) is no longer unitary. Since
G(8) is invertible, we have

Tr[Ae ~ ] Tr{G(8)AG(8) 'exp[ PG(8)H—G(8)

Let p={p„}be a real function which will be specified
later. We consider the operator G( —i p) obtained by set-
ting 8 ivp= {—iy—„}in (5). Let us fix lattice sites x,y,
and take 8 =c„tcz )cy fcy ) Straightforward calculations
show

G( iq )AG( iv ) =exp[ 2(v„—vy)]A

and G( —i p)HG( iy) ' =—H+U+iP, where

U = —g i„,, {cosh (y„—y, , ) —
1 }c„t~,,

and

are Hermitian matrices.
We can bound the right-hand side of (6) as

for arbitrary complex 8„.Here the transformed Hamil-
tonian is

G(8)HG(8) ' = —g t„,e" . " ct c,
u, I', a

+ v({n„.})+gh„S..

~Tr{«—iv'»« —iv) 'exp[ —PG( —iv)HG( —iv) ']})~e '". '"'[(A*A(]'"Tr[e-I""' 'i'e i" '"'»]-
—2(P» —

yy )Tr [e P(H +U

2('P Py)[
[

PU[
[ T [ 'PH] (10)
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where l(0(( denotes the maximum of the absolute
values of the eigenvalues of a Hermitian matrix O. To
prove the above bounds, we use the following inequalities
for operators (matrices) on a finite-dimensional space: (i)
the Schwartz inequality,

Tr[0~] «[Tr [0*0]Tr[p*p] j 'i'

with O, P arbitrary; (ii) (Tr[OP]( «((0(( Tr[P] with
0 Hermitian and P positive; (iii) Tr[(0*) 0 ]
«Tr[(0 0) ] with N 2 and 0 arbitrary [14]; and
(iv) the Golden-Symanzik-Thompson inequality [15],
Tr[e + ] «Tr[e e ], where O, P are Hermitian. To
show the first bound in (10), we set

W =exp[ —PG ( i p) —HG ( i p) —'/2],

G( ip)A—G( —i p) ', and use (i) and (ii) to get

Tr[(A'W) W] «[Tr[A'*A'WW*] Tr[mV*]j '"
«

I
IA'*A'l

l
'"Tr[ww*] .

The second bound follows by noting that ((A (( =1, and
setting X exp[ —PG ( i p) HG (——ip) '/2N] to get
Tr[X X ] «Tr[(XX*) ] from (iii). The right-hand
side converges to Tr[exp[ P(H+U—)]j as N ~. The
third bound is an easy consequence of (iv) and (ii).

Now we choose p. Let A,„,, be real hopping matrix ele-

ments that satisfy A,„,, =A, ,„~(r„,, (, and A,„,, =0 for
lu —vl ~ R. We further require X„,, to be periodic, i.e.,
there are positive integers p, q, and A,„,, =k„+d,, +d holds
for any d =mpe~+nqe2 where m, n are arbitrary integers
and e~, e2 are two unit vectors of the lattice. (In one di-
mension, we of course set d =mpe~. ) We assume that the
lattice size L is a common multiple of the periods p, q.
The conditions imposed on t„,, ensure the existence of
such A.„,(The simplest choice, which is always possible,
is A.„,, =t for lu —v( & R, and X„,, =0 otherwise. By
choosing A,„,, which is "closer" to t„,„however, one gets
better constants in the resulting bounds. ) Let f= [f„jbe
a function of the lattice sites, and define a lattice Lapla-
cian 6 by (hf)„=P,,k„,, (f,,

—f„).We let p = (p„jbe the
unique solution [16] of the Poisson equation —(hp)„
=q(8„„—8» „)with a zero-point condition p» =0. The
"charge" q &0 will be determined later. By using the
periodicity of X,„,, and explicitly writing down the solution
in terms of the Fourier series, one finds that p has the fol-
lowing two properties [5]: (Pl) There exists a finite con-
stant r$, and lp„—p, , l «qB holds for any u, v with

(u —v( & R. (P2) In the L ~ limit, one has
~ qy(x —yl in one dimension and p„~qa[n(x —yl in

two dimensions for sufficiently large (x —yl with finite
constants y, a.

Noting that the above property (P 1 ) implies cosh(p„
—p, , ) —

1 «g(q)(p„—p, , ) for (u —v( & R with g(q)
= [cosh(qb) —I j/(qb), we have

((exp[ —pU]l I- «exp pZ(r„,, [cosh(p„—p, , ) —1]( «exp pg(q)gk. , (p, —v, , )'
El, I' P, V

=exp —
2Pg (q)g p„(Ap)„=exp [2Pg (q)qp„],

where we have used l(ct~, , +ct~„((= I to get the first bound. By substituting the bounds (10) and (11) into (6),
we get

((A&t (-(Tr[Ae ~"](/Tr[e ~"]«exp[ —2v +2Pg(q)qp ].
To optimize this bound, we define

(12)

(13)

exp[ —f(P) ylx y I] (d= 1 ),
exp[ —f(P)aln(x —y(] =(x —y( 'f s (d=2)

f(P) max [2q —2Pi1'[cosh(qb) —lj],
q~0

which is manifestly decreasing in P, and has the asymptotic behavior stated in the theorem. By using the property (P2)
of p and letting the charge q to be the maximizer in the above, we finally get

for sufficiently large (x —y(. Thus the bound (2) has

been proved.
The bound (3) is proved in exactly the same manner.

To prove the bound (4), we set A =5„+S»,and perform

a spin-dependent unitary transformation represented by

G(8) =Q„exp[ ic»8„n„]—The rest .of the proof pro-

ceeds in exactly the same way as the above.
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