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Suppression of Superconductivity by Disorder
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Renormalization group arguments are used to give a complete parametrization of the disorder depen-
dence of the mean-field superconducting T, within a BCS model. The theory describes destruction of
superconductivity in bulk materials well before the metal-insulator transition is reached, and rapid deg-
radation of T, in thin films with increasing sheet resistance. Comparison of explicit calculations with ex-
periments yields good agreement.
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It is an established experimental fact that strong non-
magnetic disorder is detrimental to superconductivity
(SC) [I]. In order to describe this phenomenon, it is use-
ful to distinguish between two idealized classes of disor-
dered SC's, viz. , "granular" and "homogeneous" systems
[2]. In the former, phase fluctuations are important and
ultimately destroy phase coherence, while in the latter the
amplitude of the order parameter is suppressed, and a
mean-field (MF) approach is reasonable. Here we will

restrict ourselves to the homogeneous case. Theoretically,
the degradation and eventual destruction of SC in these
systems pose a very hard problem. One has to deal with
strong disorder in the presence of strong electron-electron
interactions, a task which is very di%cult even in the ab-
sence of SC. Nevertheless, there has been substantial
effort devoted to this problem, and a number of effects
that contribute to a degradation of the SC transition tem-
perature T„have been identified [3-9]. This makes one
wonder whether there are still more that have been over-
looked.

In this Letter we consider a model, which we will call a
BCS model, where the phonon-mediated part of the
effective electron-electron interaction potential is a phe-
nomenological constant. The Coulomb part of the in-
teraction is treated realistically. For this model we use
general renormalization group (RG) arguments concern-

ing the structure of the pair propagator (PP) to show that
the destruction of SC is driven by disorder-induced
changes in three quantities: the single-particle density of
states (DOS), a quasiparticle DOS, and the Coulomb
pseudopotential. We obtain this result from a microscop-
ic derivation of the Landau-Ginzburg theory for the SC
transition in a disordered system. Other derivations are
possible and will be discussed elsewhere [10].

Our starting point is the action for a general Fermi sys-
tem [I I],

~p wpS=„dr dxg tlt'(x, r) t), tir'(x, r) —„dr H'(r).

Here P = I/T is the inverse temperature, r denotes imagi-
nary time, y' and y' are Grassmann fields with spin index

i, and H'(r ) is the Hamiltonian in imaginary time repre-
sentation. We use units such that kg=A =1. H' con-
tains a part describing free electrons with mass m in a
static random potential, and an electron-electron interac-
tion part, H;„&. The random potential is assumed to be
delta correlated in space and to have a Gaussian distribu-
tion. H;„& can be written in terms of three interaction
amplitudes K„K„and K, for the particle-hole spin sing-

let, particle-hole spin triplet, and particle-particle chan-
nel, respectively [12],

H;„t(r) = Q gl —[K,S((6~k+K, crt( (xjk]tlt'(k, r)Vt'(p+q, r)Vt" (p, r)Vt'(k+q, r)
2WF V k, p, q i,j

It, l

+K, 8(blk y'(k, r ) .tlt'( k+ q, r ) tit" (p, r —) tltt(
—p+ q, r ) l . (2)

Here V is the system volume, WF is the bare DOS per
spin at the Fermi level, tr=(rr„o„, rr ) denotes , the Pauli
matrices, and the prime on the wave-vector sum indicates
a restriction to wave numbers small compared to the Fer-
mi wave number. In what follows we will construct an
effective, long-wavelength, small-frequency theory for the
excitations in the particle-particle channel. We therefore
interpret K, and K, as already containing Fermi liquid
corrections. Likewise, K,. will be interpreted as contain-
ing the bare Coulomb pseudopotential, p*, in addition to

l the attractive BCS interaction.
With an attractive interaction in the Cooper channel,

K,. &0, the usual sigma-model approach to disordered
electronic systems is complicated by the fact that in addi-
tion to disorder fluctuations of the spin and charge densi-

ty the fluctuations in the Cooper channel have a critical
singularity at finite temperature due to the SC phase
transition. In order to separate the disorder fluctuations
[which lead to the metal-insulator transition (M IT)]
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from the SC fluctuations, we derive an effective theory for the SC order parameter h(x, r). 6 is a classical field which

serves as an auxiliary field in a Hubbard-Stratonovich decoupling of the four-fermion term in the Cooper channel in Eq.
(2). Expansion of the action in powers of A yields an action of Landau-Ginzburg-Wilson (LGW) type that describes a

phase transition from a Fermi liquid (FL) to a SC. For a MF theory of SC, we can restrict ourselves to the Gaussian
term in the LGW action, which reads

~Low=XZA(q, m), —T g C„,„,(q, m) h(q, m)+O(b ).
q rn K, 'j

(3a)

In our case, h, =h, . n and m are Matsubara frequency indices. C denotes the PP,

C„...(q, m)= —g(y' „,+ ( —k+q)ttl„', (k)y„',(p)y' „,+ ( —p+q))0.
1

~~,p
(3b)

( )0 denotes an average performed with an action
given by Eqs. (I) and (2) with K„=O, and includes the
disorder average. We note that our approach is very gen-
eral in that (I) the coeScients of the LGW theory are
correlation functions for a fully interacting electron sys-
tem, and (2) thermal fluctuations can be incorporated by
going to higher order in h. The latter would require eval-
uation of higher-order correlation functions, and will be
investigated elsewhere [10]. The MF critical temperature
T, is given by

,
=T g C„,„,(q=0, m =0) .

Kci N l, tf2

(3c)

Z In(ro, /r)
[K„~ h I+ (b'k /h) In(coo/T)

(4)

Here coo is an upper frequency cutoff on the order of the
Debye frequency, and N„=k„—K„ is the (repulsive) in-
teraction in the Cooper channel which is generated by the
RG even if the bare K„vanishes [14]. The In(coo/T)
terms come from a frequency integration over a diffusion
propagator at zero wave number. For T, we obtain

h
Tc coD exp (5)

While Eq. (5) is convenient for a physical discussion to
be given below, and correctly describes how T, vanishes,
for quantitative evaluations at finite temperature it is im-
portant to acknowledge the fact that as renormalized

The PP, Eq. (3b), is drflicult to calculate. In a field
theoretic description of the system, the bare parameters
entering the PP are the disorder G, the interaction con-
stants K, and K, , and a frequency or temperature renor-
malization constant whose bare value is HF = trN/2
[13,14]. In previous approaches [3,8] the authors resort-
ed to perturbation theory. However, recent advances in a
RG description of the theory in the absence of supercon-
ductivity have provided us with the general structure of
the PP [14]. An explicit one-loop RG calculation has
been given in Ref. [14]. In terms of renormalized param-
eters g, k„k„and h (due to a compressibility sum rule
one has h = —k, ) and a wave function renormalization
parameter Z, one finds for the T, equation

quantities h, N„, and Z are scale and therefore tempera-
ture or frequency dependent and should be kept under the
integrals leading to In(too/T) Doing. so yields the T„
equation in implicit form,

fO Q)p

I = dt0 y„(m)/co, (6a)

with

y„(co) = [Z(t0) (K„~ —bk„(to)]/h(a)) . (6b)

Before we proceed to calculate y„(to), let us discuss the
physical interpretation of this result. The coupling con-
stant K„ is given by the DOS squared times an attractive
effective potential. Z ' renormalizes the single-particle
DOS [13]. Its presence in Eq. (5) thus reflects an effect
which one would expect on general physical grounds [15].
h has been interpreted as the quasiparticle DOS in a
disordered FL [16], and it is reasonable that it also ap-
pears. It is interesting to note that if one writes the BCS
coupling constant as X —p =Nr(v —w)/NF with attrac-
tive and repulsive potentials v and w, respectively, then
the DOS factors NF and NF represent different physical
quantities which happen to coincide for noninteracting
electrons. Bk, is a disorder-induced renormalization of
the Coulomb pseudopotential p*. It has been stressed
in Ref. [4] that the retarded nature of the effective
electron-electron interaction is crucial for an enhance-
ment of p* =p/[I+@ in(aF/too)], since an increase of the
instantaneous potential p =NFw would have little effect.
This can also be seen from Eq. (6b): The bare value
bk„=bk„(to=mo) is zero, and bk„ increases with de-
creasing m. From the structure of the RG analysis of the
Cooper propagator we know that the three quantities Z,
h, and 8'k, represent a complete parametrization of disor-
der effects on T,. This statement holds for our BCS mod-
el where K, and coD are phenomenological constants in-
dependent of disorder It is well know. n that in a strong
coupling theory the Eliashberg function is disorder
dependent, which tends to increase T„[17].This effect is
neglected in our model.

In order to determine y„(co), we have to solve the ap-
propriate RG flow equation. We have done so for three
different physical situations: the case of strong spin-orbit
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coupling [IS] and the cases of approaching a frozen spin

phase [19] and an insulator [20], respectively, from a FL
in the absence of spin-orbit coupling, magnetic impuri-

ties, or magnetic fields. We have found qualitatively
similar behavior of T,. versus disorder in all three cases.
Here we choose the spin-orbit case to compare with some

experiments. We will report on results for the other
universality classes elsewhere [10]. For the spin-orbit

case, the flow equations to one-loop order are

dy, ./d lnb = —y, gf(b) —g(l —
y,. )/4,

dg/d I nb = —sg+ g'/4.

(7a)

(7b)

Here s=d —2 for a d-dimensional system, and the func-

tion f reads

I/s (d & 2),
f(b) = ~/2 In(bxn)

I +(x,b)' I+(x,b) -'
(7c)

(7d)

T/TQ=H/b It(b), (7e)

with

dh/d I nb = —hg/4 . (7f)

To = T(b = I ) is the initial temperature scale which is on

the order of mg.
Figure 1 shows results for d=3 together with experi-

p (pQ cm)

where xn=tr/qo with tc the screening wave number and

qo on the order of the Debye wave number. The RG
length scale factor b is related to the temperature or fre-

quency by

mental data from Ref. [21]. The relation between the
RG parameter go=g(b = I ) and the resistivity p we have
taken to be p=p*go/g, , where g, =4 is the critical disor-
der for the MIT, and p* is a resistivity scale on the order
of the Mott number. Our parameters are then y,
=y, (b = I), T, =T, (p=. 0), and p*. Good agreement is

obtained with reasonable parameters (because of the
schematic nature of our scaling theory, we do not expect
y; to coincide precisely with the value obtained from a
McMillan inversion procedure). Notice that the curva-
ture of the curves changes sign as a function of y,".

Let us also mention two experimental results [22] on
homogeneous 3D systems which the present theory can-
not explain. First, in materials which have a low T,"
( ~ 7 K), T, gener. ally increases with disorder [I].
Presumably, this is due to the disorder dependence of the
electron-phonon coupling mentioned above [8,17]. Refer-
ence [g] argued that e[fects which increase T, dominate
for small T, , while T,. degradation dominates for high

T, . Second, three experiments on amorphous solid solu-
tions of Si and Ge with metals (Nb, Au, and Al) showed

that T,. vanishes only very close to the MIT, while we find

suppression of SC well in the metallic phase. In these
systems physical mechanisms favoring SC must be
present which render our simple model inapplicable. This
is obvious in the case of SiAu, where neither of the con-
stituents is superconducting and our model is clearly
inadequate.

Figure 2 compares results for d=2 with experiments
on MoGe [23] and Pb [16] films. The relation between

go and the observed resistance just above T, is

7f go

2 I
—(go/4) [nb (T,. )
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F1G. 1. Theory (solid lines) with experimental data redrawn

from Ref. [21]. Parameters chosen for Nb3Ge, Nb3Sn, and

LuRh4B4 are y, =0.60, 0.70, and 0.294; T, =26.3, 19.4, and

1).5 K; p* =433, 305, and 3070 pO cm.

0
0
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FIG. 2. Theory {solid lines) with experimental data redrawn

from Ref. [23] (MoGe) and Ref. [I6] (Pb). Parameters chosen

for MoGe, Pb are y, =0.15,0.28; x =6.0,6.0; T, =7.0,6.0 K;

f=3.I, 1.58. In both cases a fit of slightly lower quality is possi-

ble with f= I.
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For free electrons, f= I, but in real systems one expects
f&l. Again we get good agreement with reasonable pa-
rameter values (i.e., within a factor of 2 of what one
would reasonably expect). Two other experiments on
homogeneous films are Refs. [24] and [25]. The results
of Ref. [24] on Mo-C films are very similar to those of
Ref. [23] on MoGe, and can be fitted with similar param-
eters. Data on Pb in Ref. [25] show a substantially
slower decrease of T„ than Ref. [16]. We do not know
the origin of this discrepancy.

Finally, we mention the relation of our theory to previ-
ous approaches. Our theory is a generalization of earlier
work by Maekawa et al. [3], Anderson, Mattalib, and
Ramakrishnan [4), and one of us [8]. Reference [3] cal-
culated the PP in perturbation theory. Reference [4]
considered localization corrections to the Coulomb pseu-
dopotential, and Ref. [8] calculated the leading disorder
correction to T, for small disorder, including the disorder
dependence of the electron-phonon coupling which we
have neglected here. Notice that due to an approxima-
tion made, Ref. [8] did not distinguish between the two
DOS renormalizations denoted by h/H and Z t above.
Finkelshtein [9] considered a Cooper channel interaction
amplitude I, which includes the ladder summation.
Therefore his condition for T„ is a divergence of the re-
normalized I „while his flow equations are valid only for
small I „. As a consequence, Ref. [9] misses the DOS
effects discussed above.

In summary, we have given a complete parametrization
of the disorder-induced suppression of the mean-field su-
perconducting transition temperature within a model
~here the phonon-mediated electron-electron interaction
is constant. An evaluation of our results at one-loop or-
der yields good agreement with experiments.
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