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Evidence for Reptational Motion and the Entanglement Tube in Semidilute Polymer Solutions

Paul T. Callaghan and Andrew Coy

Department of Physics and Biophysics, Massey University, Palmerston North, New Zealand
(Received 3 December 1991)

The internal dynamics of high molar mass polystyrene in semidilute solution have been examined us-
ing pulsed gradient spin echo NMR. We find evidence for reptationlike motion characterized by mean-

square displacement ¢(1) ~¢ "4 1"2 and 1 regimes. We observe clear transitions between ¢(t) ~1¢

172 and

¢(1) ~1t regimes and the data are broadly consistent with the quantitative predictions of Doi-Edwards
theory. In an experiment akin to dynamic neutron scattering, we obtain a structure factor from which
some information about entanglement tube dimensions can be deduced.

PACS numbers: 61.25.Hq

A central question in understanding the dynamics of
entangled polymer molecules concerns whether linear
chains in semidilute solution undergo reptation [1-4].
Reptation is characterized by one-dimensional Rouse-like
[3-5] curvilinear diffusion in an entanglement tube
formed by the topological constraints of surrounding
chains. The relevant distance scale for this motion there-
fore lies between the limits of the interentanglement dis-
tance, a, and the polymer rms end-to-end length, R, and
is typically in the range 50 to 5000 A. Corresponding
with these lengths is the time taken to diffuse distance a,
the equilibration time, 7., and the time taken to diffuse
distance R in the laboratory frame, the tube disengage-
ment time, t4. 7, and 7, are typically in the range
nanoseconds to seconds.

One means of describing the polymer motion is via the
rms laboratory frame displacement of the polymer seg-
ments [31,

¢(1) =([R, (1) =R, (0)1%). )

The characteristic behavior of ¢(t) over the various time
regimes represents a signature for reptative motion,
namely [3], (I) free Rouse motion

tSt., 0()<a? ¢()~1'?, (2a)
(I1) Rouse motion constrained to the tube
1. 5tStr, atSe(t)SRa, ¢(1)~1'4, (2b)
(I111) curvilinear diffusion in the tube
RSt1Sty, RaSeU)SRE o()~1'?; (2¢)
(IV) long-range center-of-mass motion
g <St, R?2Se(), ¢(t)~1. (2d)

T is the Rouse time. Whereas I refers to local, segmen-
tal Rouse motion, Il and III refer to the motion of the
primitive chain. Note that the transition regions from Il
to 11 and from III to IV occur at approximately 37%7g
and rty4, respectively. Regime IV corresponds to poly-
mer self-diffusion with coefficient D;. The tube disen-
gagement time 7, can be calculated from R and D; via
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(3]
t4=R*3nD; . 3)

Using the tube diameter a, one can calculate Z, the num-
ber of steps in the primitive path,

Z=R?%/a? (4a)
and hence
tr=14/3Z. (4b)

To date most experimental tests of reptation have fo-
cused on the molar mass scaling law, D;,~M ~2. which
results from Eq. (3). While there is substantial evidence
for M ~? scaling in polymer melts [6], such scaling has by
no means been established in the case of a semidilute
solution [4]. Of critical importance to the reptation pic-
ture is the existence of sufficient numbers of entangle-
ments to justify a mean-field description. Most studies of
self-diffusion in a semidilute solution have employed poly-
mers with molar masses below 1x10° daltons for which
the tube diameter a is comparable with the polymer di-
mension R. Consequently, it is highly doubtful whether
the entanglement tube exists for such systems.

Furthermore, the existence of an M ~? scaling region is
not unique to the reptation model and cannot therefore be
regarded as the definitive signature for this motion even
when the molar mass is sufficiently high that Z>1. A
more convincing test is to examine the entire motional re-
gime of the polymer, and especially the internal modes
represented by regimes II and I1I above [7]. To measure
¢(t) requires a technique sensitive to self-motion over the
distance regime 50 to 5000 A and the correspondingly ap-
propriate time scales as defined above. Traditionally,
such a measurement would be made via the dynamic
self-motion structure factor in a scattering experiment,
namely,

E(q,t) =N "'Y (expli2nq- [R, (1) —R,(0)]}). (5)
The leading term in the power-series expansion of E(q,?)

is —272q%z(1)% where 3(z(¢)?) =¢(t) and g is the mag-
nitude of q. Currently the two principal techniques used
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to measure self-motion are neutron scattering (incoherent
fraction) and pulsed gradient spin-echo (PGSE) nuclear
magnetic resonance (NMR) [8-10] for which Eq. (5) ap-
plies in the narrow gradient pulse approximation [9,10].
Unfortunately neutron scattering is confined to measuring
¢(1) S50 A while, until recently, PGSE NMR has been
confined to ¢(1) 21000 A. Recent improvements [11,12]
to the PGSE-NMR method have reduced this lower limit
by an order of magnitude. One such method, the PGSE-
MASSEY technique [12], is used to obtain results report-
ed here. The time window available to this method is
determined by the available gradient amplitude (here 18
Tm ~') and by spin relaxation. In the present instance it
is limited to 10 ms St S 1's.

Figure 1 shows D; vs M for polystyrene in carbon
tetrachloride (CCly) at a concentration of 9% (volume
fraction). These measurements and all others reported
here were performed at 30° C using a PGSE-NMR sys-
tem operating at 60-MHz proton NMR frequency. Note
that in obtaining the data shown in Fig. 1 we have en-
sured that the diffusion time is sufficiently long for
center-of-mass motion, ¢(t)~t, by utilizing a stimulated
echo sequence where necessary. The data are consistent
with the usual D, ~M ~?2 prediction but due to the limit-
ed region of scaling we do not regard such behavior as
convincing.

For the ¢(¢) vs t experiments we have chosen a high
molar mass subset using M values in excess of 1% 10° dal-
tons and varied the observation times over the widest pos-
sible range. Using literature values of R and the D, data
of Fig. 1, Doi-Edwards theory [3] can be used to generate
the parameters shown in Table I. Note that in the case of
the 9% 15x10°® daltons polystyrene sample, where 74
= 10 s, the self-diffusion coefficient in region IV cannot
be measured directly and we use Fig. 1 to obtain D; by
extrapolation assuming D;~M ~2. The minimum num-
bers of entanglements are calculated by assuming a <320
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FIG. 1. Dependence of self-diffusion coefficient (D;) on mo-
lar mass (M) for polystyrene in CCls at 9% volume fraction.
The straight line corresponds to D;~M ~% and has been used to
obtain D, for the 15% 10° daltons sample by extrapolation.

TABLE I. Parameters relating to polymer systems used in
this work calculated using Eqgs. (3) and (4). Polystyrenes were
obtained from Polymer Laboratories (Shropshire, England)
with molar masses (and polydispersity parameters) of 15x10°
(1.25), 3.04x10° (1.04), and 1.75%10° (1.06). R values were
obtained from concentration-dependent radii for polystyrene in
CS; [14] for which the dilute solution coil expansion factor is
approximately 1.7, the same as in CCl, [14,15].

Volume
fraction R Dy T4 TR

a
M, @) (A (mi*™H A z () (ms)

1510 9 2900 3.5x107°* 320 82 8.1 33
3.0x10% 9 1300 7.5x10~" 320 17 0.076 1.5
1.8x10° 9 990 3.5x10~'% 320 10 0.010 0.33
15% 108 2.2 3100 6.5x10™' 930° 11 0.050 1.5
15x10% 13 2700 1.5x107'%¢ 280 93 16 58

aExtrapolated from M ~2? dependence.
bExtrapolated from ¢ ~%7° dependence.
°Extrapolated from ¢ 3 dependence.

A for the 9% solutions, a choice which we shall subse-
quently justify. Using this upper limit we may calculate
the number of primitive path steps Z using Eq. (4). The
values of Z =10 represent sufficient entanglements for
the tube model to apply [13] for these polymer solutions.
It should also be noted that three of the calculated tube
disengagement times cause 774 to lie within the experi-
mental time window of PGSE NMR.

Figure 2 shows ¢(z) vs t obtained from the low-q
dependence of E(q,t) lie., E(g,t), t20.5] for four of
the polymer solutions of Table I. While Fig. 2(a) com-
pares the data with scaling lines for z'/%, ¢'2 and t be-
havior, in Fig. 2(b) the data are compared with the nu-
merical predictions of the Doi-Edwards theory [2,3]. A
transition region from ¢(t)~t to ¢(t)~¢"? is clearly
visible for three of the four polymer systems as the obser-
vation time is reduced below 1 s. In each case the posi-
tion of this transition closely agrees with the theoretical
reptation prediction. For the 15%10° daltons polystyrene
at 9% concentration no such transition is apparent, con-
sistent with our calculated value of 74. It is important to
note that, in the region ¢ 2 7 g, the theoretical curves of
Fig. 2(b) contain no adjustable parameters and use only
the empirical D; and R values shown in Table I. The
chosen value of a is significant only in the region ¢ < 7.

The transition from ¢(t) ~¢"? to ¢(1)~¢'"* would be
expected in the vicinity 1 ~3727g, and at a length scale
Ra. Reference to Table I indicates that, given the chosen
upper limit values of a, we would expect to just see this
transition within the PGSE-NMR time scale only for the
9% solution of 3.0x 108 daltons polystyrene and the 2.2%
solution of 15x10° daltons polystyrene in CCl;. Our
data do not clearly indicate such a transition for these po-
lymer systems, suggesting that a is somewhat smaller
than the chosen maximum. However, we do see a clear
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FIG. 2. {z(1)?) vs t data for polystyrene in CCly (solid squares 2.2% 15x 10° daltons, open circles 9% 1.8 x 10° daltons, open trian-
gles 9% 3.0x 10° daltons, open squares 9% 15x%10° daltons). Note that ¢(1) =3(z(¢)?), z being the component of displacement along

g. (a) The data are compared with asymptotic lines for ¢

1/4' tl/2

, and ¢ scaling. (b) The solid curves correspond to Doi-Edwards

theory for regions II, II1, and 1V, calculated using the parameters of Table I. For the 2.2% 15X 10° daltons system the effect of the
transition from II to 11l is shown in the upper solid curve whereas the lower dashed line corresponds to the Doi-Edwards prediction

incorporating only regions III and IV.

t'/4 region in the case of the 9% solution of 15x% 10° dal-

tons polystyrene, although the absolute values of the
mean-square displacements are somewhat below the pre-
dictions of Doi-Edwards theory based on the value of D;
extrapolated for this polymer. It should be noted that the
theory represents the data well if a value of D; is chosen
which is a factor of S lower. This casts some doubt on
the use of M ~2 scaling to obtain D, by extrapolation.

One other prediction of the Doi-Edwards theory is that
the ¢(z) vs t data for a common tube diameter should
converge at ¢(z.) = a’. For the three sets of data corre-
sponding to different molar masses with a common solu-
tion concentration, and hence tube diameter, a high de-
gree of convergence is apparent at short observation
times. We note that the convergence value of (z(r)?) is
<3x10 7' m?, consistent with the maximum value of a
assumed here.

So far we have considered only the motion of the prim-
itive chain measured using the low-q limit of Eq. (5). Su-
perposed on this is the rapid Rouse motion about the
primitive chain which occurs at distance scales shorter
than a. To examine this “local” motion it is necessary to
measure the high-g¢ dependence of E(q,). The in-
coherent dynamic structure factor of Eq. (5) represents
the Fourier transform of the average propagator [16] of
the motion. We shall find it convenient to treat the local
motion and the longer-range primitive chain motion as
stochastically independent so that the total average prop-
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agator is a convolution of local and primitive chain propa-
gators. In consequence the overall dynamic structure fac-
tor will be a product of factors for the local and primitive
chain motions.

Because the PGSE-NMR observation time greatly
exceeds 1., the average propagator for this local motion
is an autocorrelation function of the polymer segments
density distribution, p,(r), in their motion transverse to
the tube. This leads to a structure factor |S,(q)|2, where
S1(q) is the Fourier transform of p;(r) [17]. Conse-
quently,

E(q.1) =15 1@)]%E pq.1) | 6)

where E,(q,7) is the primitive chain dynamic structure
factor. A suitable choice for p,(r) is the Gaussian distri-
bution, (276) ~"2exp(—r?/26%) where 26 may be re-
garded as the tube diameter. This would lead to |S,(q)|?
of exp(—4n2q’6?). Ep(q,t) is given by the Doi-
Edwards theory [2] for regions III and IV but we are
unaware of any analytic expression for the region II in-
coherent structure factor. For the purpose of interpreting
[S1(q)]? we therefore use the extrapolated region III
E .(q,t) dynamic structure factor as an approximation.
Figure 3 shows E(q,t) vs ¢2, for 15%10® polystyrene
per CCl, solutions at 9% and 13% concentrations, ob-
tained at a fixed measurement time of 48.5 ms. Also
shown are the corresponding E,c(q,7) curves calculated
using values of R and D, given in Table I. The concave
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FIG. 3. E(g.t) vs g? for 15x10° daltons polystyrene at 9%
(open circles) and 13% (solid circles) in CCls. The observation
time ¢ is 48.5 ms, sufficiently long for the PGSE narrow pulse
approximation to hold. The theoretical lines correspond to
Doi-Edwards incoherent structure factors and the downwards
deviation of the data at high g is believed to arise from time-
averaged local Rouse motion restricted within the entanglement
tube.

nature of Ep(q,t) vs g? permits the observation of
|S1(g)|? attenuation provided ga~1. From the e '
points of this additional attenuation we estimate tube di-
ameter values of 320 and 280 A for the 9% and 13%
solutions. At best these values are rough estimates. We
note that their ratio is not consistent with the static
¢ ~%75 dependence, a fact which may reflect hydrodynam-
ic influences [18]. A more detailed analysis would re-
quire an accurate description of E,.(g,t) over the entire
range of ¢ employed here. However, the present data en-
able us to set upper limits on a. Both the E(gq,t) vs ¢*
data and the ¢(¢) vs ¢ data are consistent with a tube di-
ameter smaller than 320 A for the 9% solutions.

It should be emphasized that the ¢ values used here are
unusually large for PGSE NMR [27g~ (130 A) ~'] and
that the data reliability depends on the echo-stabilizing
effect of the PGSE-MASSEY technique. In the event
that the additional attenuation evident at high g contains
an instrumental artifact, we may take the values of a
determined here as upper limits. While our conclusions
regarding magnitude to the tube diameters in semidilute
solution are somewhat tentative, the establishment of
these maximum values lends credence to the tube depic-
tion for the very high molar mass polymer solutions used

in this work.

By contrast we attach a high degree of significance to
the ¢(¢) vs t observations shown in Fig. 2. While such
transitional behavior has been found in computer simula-
tions [19-22], to our knowledge, these data represent the
first direct measurement of the motional regimes long
considered a signature for reptation.
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