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Nonlinear 1D Laser Pulse Solitons in a Plasma
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A class of exact one-dimensional solutions for modulated light pulses coupled to electron plasma waves
in a relativistic cold plasma is investigated. The solutions are in the form of isolated envelope solitons
and the nonlinear relationship between their group velocity, amplitude, and frequency are discussed.
Numerical results are presented for intense pulses propagating close to the velocity of light; such pulses
are of great interest from the point of view of particle and photon accelerators.
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Recent developments in laser technology, such as the
generation of picosecond pulses with energies up to tens
of joules and possible applications to particle accelerators,
photon accelerators, etc. , have led to a resurgence of in-

terest in the study of intense (t „,/c & 1) laser pulse prop-
agation in cold plasmas [1]. One of the problems of key
interest from the point of view of particle and photon ac-
celeration is the magnitude of the group velocity of such
pulses since it determines the propagation speed of the as-
sociated plasma wave wake field. This question has been
addressed in the past by computer simulations using par-
ticle codes, numerical solution of the relevant nonlinear
equations, etc. An attempt has also been made [2] to es-
timate the group velocity from the nonlinear dispersion
relation for exact solutions [3-5] of relativistically intense
circularly polarized waves. However, since these well-

known exact solutions are for infinite unmodulated non-

linear waves, it seems inappropriate to use them for the
estimate of nonlinear group velocity for short pulses. In
this Letter, we examine a class of exact one-dimensional
nonlinear solutions of the relativistic cold plasma equa-
tions which represent envelope solitons of light waves

[6,7], in which the modulation envelope propagates as a

large amplitude plasma wave in the medium. These solu-

tions are a step beyond the well-known stationary solu-

tions in a cold plasma because the envelope and the phase
propagate with different speeds so that the nonlinear rela-
tionships between the phase and group velocities can be
investigated. For simplicity and clarity, we restrict our
analysis to circularly polarized waves which couple to
longitudinal disturbances only because the amplitude is

modulated. These intense light pulses might form in-

teresting candidates for photon accelerator schemes [8] in

which the combined effect of the change in plasma densi-

ty and effective electron mass (due to the relativistic
effect) may be used to get significant improvement in the
frequency multiplication that is possible.

We start with the well-known relativistic set of fluid

equations for a cold plasma (in one dimension) [1,3-5]:
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where M=R [(1 —p )O' —Ap[ is a constant of integra-
tion. 1 n our representation the amplitude R = (A, ,
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+A ) ' of the circularly polarized electromagnetic wave

exhibits a modulation propagating at the group speed p.
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where y=[(1+A )/(1 —u )]'I, u is the longitudinal ve-

locity, and the transverse velocity is eliminated by the ex-
act integration u&=A/y. The normalizations are n/no,

u/c, eA/mc, ep/mc, tu„t, ta„x/c, etc. We now introduce
a change of variables x pt =g, t—=r and make the key

ansatz that in the moving frame the vector potential is

circularly polarized and has a sinusoidal phase variation,
i.e., A=[[ya(g)+zia(()]exp( —iver)+c. c]. The intro-

duction of a frequency parameter X in the phase factor is

the basic deviation from earlier stationary wave solutions

[3-5]; this allows us to identify p with the group velocity

of the light pulse and also to distinguish between the

group and phase speeds. The choice of circular polariza-
tion allows us to avoid the generation of harmonics in all

wave fields. For plasma oscillations, which form the
modulation envelope, this leads to I)/8r =0 in the moving

frame. Integrating the fluid equations we then get
n(p —u) =p and y(1 pu) —

p
—=1. Using these relations

and further writing a(g) =Rexp(IB), we can reduce the
Poisson's equation and the wave equation to obtain the

following set of coupled nonlinear equations:
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The question of the definition of phase speed is a little more complex. For small amplitudes R is always positive and the
exponential factor contains the entire phase information. The phase speed may then be shown to be simply I/P satisfy-
ing the conventional relation V„Vg = I. However, for arbitrary amplitudes R oscillates because of the strong R —

p cou-
pling and the phase speed has to be defined by directly determining the z, t variation of R cos(8 —

1t.r ).
Equations (3)-(5) are the final set of coupled equations that we must solve for studying the propagation of modulated

light pulses in a cold plasma. These equations contain one exact integral of motion which may be written as

R'K=
2

where

t2
+ V(R, y),

2(1 —P')

[P(I+/) —[(I+&) —(I —P )(I+R )} ' '].
(I —P')' (7)

with the envelope factor described by an elliptic function.
Equation (8) represents an isolated light pulse with a fre-
quency to=ad/(I —P ), wave number k =ktI/(I —

P ),
phase velocity I/P, group velocity P (note V„Vg =c ), an

envelope scale length (in units of c/top) equal to (I
—p2)/(I —pz —

A, 2)'/, and an amplitude-group-velocity
relationship given by Eq. (10). Note that the envelope
scale length is real only when A, & I —P . This may be
physically interpreted as follows. The wave frequency in

the frame moving with the group velocity has the
Doppler-shifted value to=(to kP)/(I ——P )'/ =A/(I
—P ) '/ . Thus the inequality A, & (I —P ) '/2 corresponds
to the situation when the Doppler-shifted wave frequency
ta/to„& I, i.e., the electromagnetic wave finds itself in an
overdense plasma and is totally trapped; this is why we

get a soliton solution and the wave does not leak out. The
effective scale length for trapping may now be seen to be
(I —P ) '/ e/(to„—to ) '/ which is quite reasonable.
Similarly the amplitude-group-velocity relationship may
be written in terms of physical parameters as

(I 2 g2) I/2

3» = R sech
z (x —Pt)

&cos X
p2 P

where
J/2

(I —P')(I —P'-~')
R~ 4 4~'- (I —P')(3+P')

(KeO) gives modulated periodic wave-train solutions

(9)
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Since P & I (group velocity less than c), the problem is
similar to a Hamiltonian of coupled anharmonic oscilla-
tors with 2 degrees of freedom [9] (R,p) where the
effective mass for one of the anharmonic oscillators is

negative. In the limit of weak density response, the prob-
lem can be made one dimensional by the substitutions

p = (I +R ) '/ —I and n = (I +R ) '/ ". Expanding in
R and taking M=O, K=0 we get the well-known en-
velope soliton solution

(R 2 4+4R 2 2) + [(R2 4+4R 2 2) 2+64R 2 ~2] I/2

8N
(10)

For arbitrary amplitudes we need to analyze the fully
two-dimensional problem [Eq. (7)] in which the non-
linear potential function has a complicated structure.
Our primary interest is to investigate soliton solutions for
which we have solved Eqs. (3)-(5) numerically and
looked for solutions that decay exponentially as

For A, very close to (I —P ) '/ we get small-
amplitude solitons which are well described by the analyt-
ic solutions (8) and (9). As A, is decreased the soliton
amplitude increases and acceptable solutions occur only
at discrete values of A,. In other words, for a fixed value
of P finding soliton solutions turns out to be an eigenvalue
problem in A, . The sizes and shapes of these solitons also
vary as a function of A, . Typically p has a characteristic
bell shape whereas R has a number of nodes. Figure 1

shows a typical soliton solution for P =0.97 and
A. =0.224445. For applications such as particle accelera-
tion or photon acceleration, the regime of interest is

P I, where the group velocity is close to c. We have

carried out a detailed investigation of soliton solutions in

this regime. Figure 2 is a plot of normalized group veloc-

ity Vs versus the normalized carrier frequency 0
(=co/co„). The solid curve corresponds to soliton pulse
results obtained from our numerical work. For compar-
ison we have also plotted the linear group velocity
(dashed line) Vgt. = (I —I/O ) '/ and the nonlinear
group velocity for the infinite plane wave [3-5] (dotted
line), Vg =P[1 —(y —I )/20 y (y + I)]. This last
expression has been recently obtained by Mori et al. [2]
and depends on the infinite wave y, viz. , y =(I+A )'/.
The nonlinear group velocities are closer to c than the
linear group velocity. This is physically understandable
because the nonlinearity makes the electrons heavier and
thereby weakens the plasma dielectric effects. Finite
width soliton pulses propagate slower than the infinite
plane waves. Physically this is because coupling to plas-
ma ~aves acts as a drag on the electromagnetic ~aves
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FIG. 3. Variation of bn/y (solid line) and u (dashed line) for
a soliton pulse with P 0.9, )I, =0.336, and p 19.

with a width of order c/to„, which is the skin depth, at ei-
ther edge of the pulse. Figure 3 illustrates this effect for
a p 19 soliton with P 0.9 and X 0.336.

To conclude, we have analyzed exact one-dimensional
solutions for modulated light pulses coupled to electron
plasma waves in a cold plasma. The one-dimensional ap-
proximation is reasonable as long as transverse scale
lengths are much longer than longitudina[ pulse dimen-

sions (which is a few skin depths / ceo). Solutions may
be in the form of isolated envelope solitons or modulated
periodic wave trains. Physically, the soliton pulse may be
viewed as a light wave which is trapped in a plasma wave

that it generates itself. The front of the pulse generates
the plasma wave as a wake field, which is then reabsorbed

by the tail of the pulse. The exchange of energy between
the light wave and the plasma wave also leads to a
"chirping" of the pulse (cf. Fig. 1). This suggests that to
experimentally create such pulses, one must not only use
characteristic values of Ro and ro but also do some ap-
propriate chirping of the light wave. The nonlinear rela-
tionship between the group velocity and phase velocity
and between the group velocity and amplitude, frequency,
etc. , has also been discussed. Numerical results have
been presented for the first time for intense pulses propa-
gating close to the velocity of light; such pulses are of
great interest from the point of view of particle and pho-
ton accelerators. We have also demonstrated the ex-
istence of light pulses where the change in n/y inside the
pulse is well above unity (Fig. 3). One can hope to get a

For a pulse with f;„/f,.„0 (see Fig. 3), rof/ro;

(1+p)/(I —p). For the example shown this ratio is

about 20, which is a large factor indeed. Of course one
has to worry whether wave breaking or trapping of back-
ground plasma electrons can seriously jeopardize the in-

tegrity of these solutions or significantly damp them. The
photon acceleration time is = Ld/c where Ld is the struc-
ture length for the sharp n/y spike whereas the damping
time due to trapped electrons is =L,,/c where L, is the
size of the A soliton and c is roughly the velocity to which

the trapped electrons are accelerated. Since Ld(&L, in

these solutions, photon acceleration may be completed
long before the trapped particle effects come in. This
conclusion needs further investigation by simulations or
experiments.
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