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Measurement of Collisional Anisotropic Temperature Relaxation in a
Strongly Magnetized Pure Electron Plasma
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The rate at which the temperatures parallel and perpendicular to a magnetic field relax to a common
value has been measured in a pure electron plasma. This rate was measured over the temperature range
28 to 10 K and for magnetic fields in the range 30 to 60 kG. When the cyclotron radius r, is large com-
pared to the classical distance of closest approach b, the measured rates are described by conventional
scattering theory. When r, /b & I, .the measured rate drops precipitously as r, /b is decreased, in agree-
ment with the adiabatic-invariant theory of O' Neil and Hjorth.

PACS numbers: 52.20.Fs, 52.25.Dg, 52.25.Wz

Collisional Coulomb scattering in velocity space is an
important process in plasma physics. Examples include
the equipartition of energy among the various degrees of
freedom (important in many fusion heating schemes), the
scattering of charged particles into a specific region of ve-

locity space (e.g., the loss cone of a magnetic mirror),
and momentum exchange between electrons and ions
(plasma resistivity). Many theoretical studies on col-
lisional velocity scattering have been made during the last
fifty years [Il. However, there are only a few direct ex-
perimental tests of these theories and, with the exception
of the Hyatt, Driscoll, and Malmberg [I] experiment, the
relative uncertainties in these tests are of order unity.
Also, unlike the prior experiments, we investigate col-
lisional scattering in the strong magnetic-field regime
where the magnetic field greatly affects collision dynam-
ics.

We have measured the rate v at which electron-
electron collisions equilibrate parallel and perpendicular
temperatures in a pure electron plasma. Here parallel
and perpendicular refer to directions relative to an ap-
plied uniform magnetic field. Our methods are closely re-
lated to the work of Hyatt, Driscoll, and Malmberg, but
cover a different parameter range, and we employ a
different procedure to measure v. The plasma is confined
axially by an electric field and radially by a magnetic
field. The confining electric field is modulated, producing
a modulation in the plasma length parallel to the magnet-
ic field. Collisions make the process irreversible and the
plasma is heated. Maximum heating per cycle is predict-
ed to occur when 2ttf =3v, where f is the modulating fre-
quency. We determine v by measuring the modulating
frequency which produces the most heating per cycle.

At high temperatures the plasmas we studied were in
the weakly magnetized regime (i.e., r, /b ) I, where r,. is
the cyclotron radius and b =e /tcT is the classical dis-
tance of closest approach). In this regime the measured v

is proportional to T (Fig. 3). For temperatures
where r, ./b —I, the measured v peaks. As the tempera-
ture is lowered below this point, the plasmas entered the
strongly magnetized regime, r„/b & 1. In this latter re-

v=2 48nb'-t (r, /b) './'exp[ —2.34(.b/r, )- '] . .(2)

A section of our electron trap is schematically shown in

Fig. 1. This section consists of three cylindrical elec-
trodes (called gates and labeled G

~
to G3) and five charge
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FIG. 1. A schematic of part of the apparatus. The gate ra-
dius is R&; =1.27 cm, and rs/2=r~=0. 040 cm where r~ is the
radius of the hole in collector Cj.

gime v drops precipitously as the temperature is de-
creased. This precipitous drop is in agreement with a
theoretical prediction of O' Neil and Hjorth [2] who ar-
gue that the collisional dynamics is constrained by a
many-electron adiabatic invariant in the regime r, /b« l. .

In the weakly magnetized regime we compare our re-
sults to an unmodified and a modified Ichimaru and
Rosenbluth (IR) prediction [3],

v =(8Jz/15)nb'( In[A],

where t JtcT/m. For the unmodified prediction the
Coulomb interaction is cut off at a distance of kg so that
A=ko/b. However, when r, «Xo, as is the case for the
data in this paper, theoretical work by Silin [41 and
theoretical and numerical work by Montgomery, Joyce,
and Turner [5] show that Coulomb interactions should be
cut off at a distance of about r, This modified prediction
has A=r, /b In the st. ro.ngly magnetized regime we com-
pare our results to an O' Neil and Hjorth [2] (OH) calcu-
lation which gives
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collectors (C~ to C~). Radial confinement of the plasma
is provided by the magnetic field [6]. Biasing G~ and G3
su%ciently negative relative to G2 confines the plasma ax-
ially within G2. The complete trap includes an electron
source and additional gates. The source, gates, collectors,
and magnetic field are all coaxial. The electron trap re-
sides in a sealed, evacuated vessel which is cooled to
liquid-helium temperature (4.2 K).

To measure the plasma density the potential of G3 V3,
is quickly ramped to ground. This allows the electrons to
stream out along the magnetic field lines and onto the
charge collectors. The number of electrons collected by
C; (i = I-5) is the number of electrons between radius r;
and r;+[ where r~ is the radius of the hole in C~. Using
these data and the potentials of the cylindrical electrodes,
an average plasma density &n) and axial length &I) can be
calculated from Poisson's equation [7]. We believe these
values are good to about + 15%.

The temperature is determined by slowing ramping V3

to ground, and measuring as a function of V3 the number
of electrons which have su%cient axial energy to escape
past G3. For simplicity, we ignore here the fact that the
actual confinement potential is less than the applied volt-

age V3 since G3 is finite in length. There is also a correc-
tion due to the fact that the plasma expands during this
process. Both corrections are included in the actual
analysis of the data. An electron can escape only when

its parallel kinetic energy is su%cient to overcome the po-
tential on G3. This requirement is

mv~f/2) —e[V3 —p(r, V3)] =mv, , (r, Vi)/2, — (3)

where p(r, Vi) is the total potential due to the confining
potentials and electron space charge. We evaluate
p(r, Vi) at the axial midplane of the plasma where the
confining potentials are ignorable. However, p(r, V3) is

still a function of V3 because the part of the potential due
to space charge changes as electrons escape. If V3 is

ramped slowly [8], essentially all electrons at r with

vi & v, , (r, Vi) escape while all other electrons are still

confined. Thus, for a slow ramp the total number of elec-
trons which escape past G3 as a function of V3 is given by

PRG
N,, [V3] =2tr N(r)erfc[v, .(r, Vi)/J2t i]r dr, (4)

where Rt; is the electrode radius and t i=(tcTt/m) '

Here erfc is the complementary error function and comes
from integrating the Maxwellian distribution from v [[

=v„(r, Vi) to vi =~. We assume a radial density profile
and fit the data with Eq. (4) to obtain Fi and thus the
parallel temperature. For T~~

~ 200 K we believe that the
error in the measured temperature is about 10%. At
T[[ =30 K the random error is about 30%, and there may
be a systematic error of about 30%.

To determine v we modulate V] sinusoidally and mea-
sure the plasma heating which results. The modulation
of V[ modulates the axial plasma length which, in turn,
modulates T[[. Collisions make this process irreversible

dTii d&I )
Ct &I) dt

+2v(Ti —T&) = —2

&I) =lo[I+ssin(2nft)],

(6)

(7)

where r, is the cyclotron radiation cooling time. The
right-hand side of Eq. (5) is derived from Larmor s radi-
ation formula. For a transparent, high-temperature plas-
ma, Larmor's formula yields

r =3.9 x I 0 "/8 sec

(e.g. , for 8 =40 kG, r, =0.24 sec). Experimentally,
when the plasma is not modulated (i.e., d&l)/dt =0), it is

observed to cool exponentially in agreement with Eqs.
(5), (6), and (8). Despite the fact that the plasma is in a
complicated waveguide, the observed cooling time agrees
with Eq. (8) to within 30%. The right-hand side of Eq.
(6) is derived from the ideal-gas law and I'rom the work
done on an ideal gas when its volume is changed, d8'
=PiAd&l). The ideal-gas approximation is valid since
the plasma is weakly correlated. Heating due to plasma
waves can be ignored since f is much less than the lowest
plasma mode frequency.

We solve Eqs. (5)-(7) by expanding Tj and Ti in

powers of e (e.g. , T& =PT&;e') and then equate each or-
der in ~ separately to zero. To order e we find that

(
dT
dt cydc

8 V

I+P
(9)

where T = (Ti+ 2T~)/3, P =2trf/3 v, and &dT/dt), r,~,

means an average of dT/dt over one modulation cycle.
Thus, there is a gradual change in T resulting from the
competition between the average heating due to modula-
tion and the cyclotron cooling.

From Eq. (9), it follows that maximum average heat-
ing per cycle occurs when f=3v/2tt. This maximum in

the heating per cycle can be observed by modulating the
plasma for a fixed number of cycles H. After the modu-
lation is over, we measure the parallel temperature of the
plasma, T, We measure T,, at a fixed time after the
start of the heating, to make the cyclotron cooling dura-
tion independent of f By repeating the. experiment at a
series of frequencies, we obtain T,, vs f as shown by the
diamonds in Fig. 2(a). The solid line in Fig. 2(a) is a
least-squares fit by Eq. (9). This solid line is obtained by
numerically integrating Eq. (9) using a v[T] =cv~ [T]
where v~ [T] is given by Eq. (I), which is appropriate in

this temperature range. In the fit c and c are free param-
eters. The fit in Fig. 2(a) yields v=36.3X 10 sec ' for
T =1400 K.

To determine v more accurately, we modify the heating

and thus the modulation, averaged over a cyc1e, puts heat
into the plasma. We model the rate of change of T&, T~~,

and &I) as

dTg 3 Tg—v(Tt —T ) = ——
dI 2
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FIG. 2. Experimentally measured T,, vs modulation frequen-

cy f (diamonds). (a) Heating comprised of 80 contiguous cy-
cles compared to prediction; (b) heating comprised of 30I sets
of 24 cycles, with the total heating process lasting about ten cy-
clotron radiation times. The horizontal line at T,, =1129 K in-

dicates the temperature of the plasma at the beginning of the
heating process.

process discussed in the previous paragraphs to make the

total process last many radiation times r, . The modified

heating process consists of 5 intervals, each having H cy-

cles, with each interval lasting a fixed time. This insures

that both the total time and the total number of cycles
are held constant (i.e., independent of f). Furthermore,
we take curves of T,, vs f for various s until an s is found

such that at the peak in net heating the plasma maintains

a nearly constant temperature. That is, at f=3v/2z the

heating balances cyclotron cooling; for lower or higher f
the heating is insufficient and the plasma cools by a large
amount. This makes the peak of the curve much sharper.
An example of T,, vs f from this modified process is

shown in Fig. 2(b). In Fig. 2(b) the solid horizontal line

at T=1129 K is the initial temperature. For the data in

Fig. 2(b), S=30I, H =24, and each interval lasted 5

msec. The solid curve in Fig. 2(b) is obtained by numeri-

cally integrating Eqs. (5)-(7) with a v[T] provided in

part by Glinsky and O' Neil [9]. The solid line is present
only to show how well Eqs. (5)-(7) describe the experi-
ment, and is not used to determine v. Instead, v is mea-
sured by visually determining the peak of T„vsf and em-

ploying the formula v=2rrf „„/3. This procedure is ac-
curate to about 5%. This modified heating process was

used to determine v for all the data in Figs. 3 and 4.
Figure 3 shows a plot of the measured v vs T (and

r, ./b) for 8 =61.3 kG and (n) =8 x l0" cm . The
dashed and dash-dotted curves are plots of the modified

IR (A=r, /b) and . the unmodified IR (A=ED/b) predic-
tions, respectively. For high temperatures the modified
IR prediction is in much better agreement with our data
than is the unmodified prediction. The solid curve is a

plot of the OH prediction [Eq. (2)]. For low tempera-
tures our data agree with the OH prediction.

Dividing Eqs. (I) and (2) by nb I produces normalized
rates which are a function only of r, /b. In Fi.g. 4 we plot
v/nb I vs r, /b for var. ious magnetic fields. For the
data in Fig. 4, (n) =8X IO" cm, (!)=3.5 cm, and (T11
—T~)/T1~ 4%. This figure shows that the normalized
data for various magnetic fields can be described by a sin-

gle curve to within experimental error.
The existence of our experimental results for the inter-

mediate regime r, /b —I has mot. ivated further theoretical
work [9]. Our data are in good agreement with this
theory also.

Because of the strong dependence of v on r, /b in the.
regime r, /b ( l, the possible systematic error of 30% in

the measured temperature in this region is much more

important when comparing theory and experiment than
other uncertainties. Furthermore, we can determine the
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FIG. 3. Measured relaxation rate for B=61.3 kG. The solid
curve is the OH prediction. The dashed and dash-dotted curves
are plots of the modified IR (A =r, /b) and the unmodified IR
(~ =4&/b) predictions, respectively.

FIG. 4. Normalized rate vs r„/b For the 0, x, a.nd 0 data

the magnetic fields are 61.3, 40.8, and 30.6 kG, respectively.

For all the data &n)=8X10" cm . The solid curve is the OH

prediction. The dashed curve is the modified IR prediction.
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frequency which produces the most heating per cycle to
within about 5%. If the average heating per electron at
radius r were independent of r and if the density were

uniform, then v would also be determined to about 5%.
However, since va: n and heating depends on the ratio

v/f, radial density variations cause radial variation in the

heating per electron and thus additional uncertainty to
our determination of v. We have analyzed our heating
method for various density profiles. Since we do not

know the radial thermal conductivity of our plasmas, we

studied two cases: zero and infinite radial thermal con-

ductivity. The error bars in Figs. 3 and 4 include the un-

certainty implied by this analysis.
In deriving Eq. (9) it is assumed that s is small. For

the modified heating process, c is easily estimated by us-

ing the fact that when 2rrf=3v the average heating
=4rrHc T/9 balances the average cooling = t; T/r, for

each interval. Here t; is the time per interval, and we

have employed the fact that t;/r, « I for all our data.
We conclude that a+6% and that corrections to v due to
finite c are at most 5%.

In summary, we have measured the rate of anisotropic
temperature relaxation for a pure electron plasma in the

regime I/32&r, /b &4.10. For r, /b)) I our .results are
consistent with the prediction by Ichimaru and Rosen-
bluth as modified by Silin and Montgomery, Joyce, and

Turner. For r, /b«1 our r. esults are consistent with a

prediction by 0 Neil and Hjorth that the collisional dy-
namics is constrained by a many-electron adiabatic in-

vdf lant.
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