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Parametric Instability of a Liquid-Vapor interface Close to the Critical Point
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An experimental study of the parametric instability of a liquid-vapor interface close to the critical
point is presented. A cell containing carbon dioxide at the critical density is vertically vibrated
sinusoidally; the acceleration amplitude ao and the instability wavelength A,o at the instability onset are
measured with respect to the excitation frequency and the critical temperature difference T, —T. These
measurements provide a simple way to determine the surface tension and the density difference between

the two phases. When T, —T diminishes ko decreases and reaches a finite value whereas ao diverges.
The shape of the wave pattern appears to depend on T„—T.

PACS numbers: 47.20.—k, 64.70.Fx

The generation of surface waves by vertically vibrating

a horizontal fluid layer has been known since Faraday
[I]. However, most of the experimental studies consisted

of vibrating a liquid layer with a free surface under air at
atmospheric pressure [2]. We present here a similar

study, but with a liquid layer surrounded by its vapor in a

closed container, and we report the instability behavior

when the experiment is performed closer and closer to the

liquid-vapor (L-V) critical point. The response of the L-

V interface to a parametric excitation is thus observed in

the vicinity of the critical point, at which the interface

disappears. We show that the measurements of the insta-

bility wavelength Xo and of the critical acceleration ao at
the instability onset determine important characteristics
of the L-V interface, i.e., the capillary length l, and the

relative density difference (pt —p, , )/(pt+ p, , ) between the

two phases. In addition, new phenomena are seen to
occur very close to the critical point, roughly for T, —T
& 0.02 K. First, the instability wavelength saturates at a

finite value, although I, vanishes for T T, . Second, the

selected wave pattern above the instability onset changes

from squares, as observed in previous experiments with

fluids in contact with air at atmospheric pressure, to a
one-dimensional standing-wave pattern. As the accelera-
tion is increased further, these patterns display a transi-

tion to spatiotemporal chaos by nucleating defects.
The fluid container is a cylindrical cell with axis per-

pendicular to gravity, 10 mm in diameter and 6.5 mm in

height. The upper and lower boundaries are made of
transparent sapphire windows which enable the patterns

to be observed. The cell is filled with carbon dioxide to a

density p within 0.2% of the critical density p„and is

maintained in a water bath thermally regulated to less

than +0.5 mk of a set temperature T in the range

0& T, —T & I K (for CO2, T, =304.13 K). Tempera-

ture is measured with a HP 2804A quartz thermometer

(10 K resolution). The cell is vertically vibrated with

the help of a BK 4809 vibration exciter driven with a HP
8904A frequency synthesizer in the frequency range
40&f&135 Hz (frequency precision better than 10 ).
The amplitude a of the sinusoidal acceleration, which is

the relevant bifurcation parameter, is measured with an

accelerometer BK 4375. The L-V interface is visualized

with a vertical light beam crossing the container, generat-

ed by a stroboscope synchronized at the surface-wave fre-

quency, i.e., half the external driving frequency f. Two

photographs of the wave pattern above the instability on-

set are displayed in Fig. 1 for two temperatures. Far
from T„,a square pattern is observed [Fig. 1(a)]; for

T, —T ~0.02 K, the pattern takes the form of parallel

lines [Fig. 1(b)]. Depending on T„—T the pattern thus

consists of either a one-dimensional standing wave or two

standing waves with wave vectors at a right angle.
The experiments are conducted by increasing the ac-

celeration amplitude a at a fixed value of f, and at a

given T„—T. For a critical value ae(f, T, —T) of a, the

flat L-V interface becomes unstable and a standing wave

bifurcates supercritically; i.e., the transition from the flat

interface to the wave pattern involves no hysteresis. Its
wavelength at onset, Xo(f,T„T)is plotted in —Fig. 2 as a

function of f for two different values of T, —T.
The simplest way to model this instability is to consider

the liquid and its vapor as two layers of incompressible

fluids, and then to take into account viscous losses in a

perturbative way. Assuming periodic lateral boundary

conditions, a linear analysis [3] shows that the amplitude

of an eigenmode of the interface with wave number k

obeys a Mathieu equation, with an eigenfrequency to(k)
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FIG. 2. Wavelength Xo at instability onset as a function of
the excitation frequency f for different values of T, —T;
T, —T 0.078 K (a) and T, —T 0 007 K. (0). Theoretical
prediction using the dispersion relation (I) (solid lines). Inset:
co'/k as a function of k 2 for T„—T =0.078 K.

FIG. 1. Parametrically generated wave patterns: (a) f 60
Hz, T, —T 0.08 K; (b) f=60 Hz, T, —T =0.02 K.

at the onset:

z (pi —p, , )gk+ cxk
(I)

Pf+P~

where pI and p, , are the densities of the liquid and vapor
phases, g is the acceleration due to gravity, and cr is the
interfacial surface tension (the correction due to the finite
heights of the layers is negligible in our experiments) [3].
Such a linear analysis predicts the parametric amplifi-
cation of a standing wave with wave number k as

PI+ P~an= 8zfk(vl+ v, , ) (3)
PI P~

~here vI and v, , are the kinematic viscosities of the liquid
and vapor phases.

Using Eqs. (I) and (2), one determines the relative
density difference, (pI —p, , )/(pI+p, , ), and the capillary
length, I, = [cr/(pl —

p, , )g] '~, of the L-V system, from the
measurement of the wavelength and the frequency at the
instability onset. As expected from Eq. (I), ru (k)/k as a2

function of k is a straight line as displayed in the inset in

Fig. 2 for T, —T=0.078 K. The corresponding relative
density difference and the capillary length are obtained
from the slope and the intercept. This linear relation is

not observed for very small T„—T, e.g., for the Fig. 2
data at T, —T=Q.007 K. This means that the simple
model above is not valid very close to the critical point.
This is also shown clearly in Fig. 3 where A,o is plotted as

0.26

ro(k) =zf (2)

This parametric-resonance condition is satisfied only ap-
proximately in a finite-size container because of the
wave-number quantization due to lateral boundary condi-
tions. In a large enough container, higher-frequency res-
onances of the Mathieu equation are never observed be-
cause they are more strongly damped by viscous dissipa-
tion. The critical acceleration amplitude for instability
onset can be roughly estimated by assuming only viscous
dissipation in the bulk [3],
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FIG. 3. Wavelength Ao at instability onset as a function of
T, —T for an excitation frequency f=70 Hz.
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FIG. 4. Divergence of the critical acceleration ao for insta-
bility onset, with respect to T T, and for different excitation
frequencies f kis the p. attern wave number at instability onset.
The solid line is of slope P 0.325 as predicted by Eq. (3).

should scale like (pI —
p, ,), i.e., as (T„—T) s with

P=0.325 the critical exponent, since vI+ v, , and pI+p, ,

are nearly constant. Figure 4 shows the limited validity

of Eq. (3). First, the data at different frequencies only

collapse roughly to a single curve. Second, slight distor-
sions to the power-law behavior are observed.

A linear stability analysis accurately taking into ac-
count dissipation would be of great interest, since the

dispersion curve could then be used as a simple method to
measure surface tension, even very close to the critical
point. The critical acceleration data could be used also to
determine the density difference and to measure dissipa-

tion in the vicinity of the critical point. Note, however,

that the hydrodynamic instability and the critical phe-

nomena are quite entangled. For instance, one expects
1-V mixing or phase change at the interface to act as an

additional dissipation. Compressible effects might also

become important close to the critical point. This might

limit the validity of our measurement technique very

close to the critical point except if all these phenomena

are taken into account in the theoretical analysis.
Above ap the instability saturates in a nonlinear way

and generates a stationary standing-wave pattern. The
bifurcation is supercritical. From previous experimental
observations, it is usually believed that the Faraday insta-

bility generates square patterns in large-aspect-ratio con-

tainers where boundary effects are considered to be negli-

gible. This has been recently shown analytically [5]. We
show here that, instead, the selected pattern strongly de-

pends on the fluid parameters. Far from T„asquare
pattern is observed [Fig. I (a)]. It consists of the superpo-

sition of two standing waves with wave vectors at a right

angle. Close to T„the stable selected pattern is a one-

dimensional standing wave [Fig. 1(b)]. The transition

takes place roughly at T, —T =0.02 K. This value slight-

ly decreases with increasing frequency, but this depen-

dence is too small to be quantified. Note that the
square-to-roll transition does not occur concomitantly
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a function of T„—T for f=70 Hz. One observes that ko
saturates at a finite value A.q when T T„in contrast to
Eqs. (I) and (2) which predict that A.o 0. In Eq. (1),
both pI

—
p, , and o vanish at T„whereas co is constant;

thus k ~, or Ap 0. The value of T, —T for which kp
saturates decreases for decreasing excitation frequency f;
roughly 0.02 K at 70 Hz, it becomes too small to be mea-
sured for f &50 Hz. Note that the measurements at
T, —T=0.078 K in Fig. 2 all correspond to nonsaturated
A, p.

Apart from the fact that gravity stratification may
affect the behavior of a and p~

—p, „
the main deficiency

of our model in the vicinity of the critical point is that it
neglects dissipation to leading order. Dissipation, due to
the viscous fluid flow generated in the bulk of the gas and
liquid layers by the interface instability, scales like
(vI+ v, , )k . This cannot be considered as a perturbation
in the vicinity of the critical point where k becomes large,
as is qualitatively shown by the wavelength-frequency
curves of Fig. 2: For T, —T=0.078 K, the model (solid
line) fits the data over the entire wave-number range; for
smaller T,. —T, e.g. , T,. —T=0.007 K, agreement is ob-
served only at small wave numbers. A correct analysis
would require the resolution of the Floquet problem that
can be avoided in the weakly dissipative model considered
above. To our knowledge, this has not been performed so
far, even for any other parametrically amplified wave

problem. The saturation of the wavelength to a finite
value when T T„(Fig.3) can also be understood as a
viscous cutoff length A.g, for which the surface wave is too
strongly damped to be parametrically amplified. It can
be checked that [(vl+v, , )/f]'~ gives the right order of
magnitude for A.s, which scales as I/Jf when the excita-
tion frequency is varied.

When using Eq. (I) in the T, —T range where it is ap-
proximately correct, numerical values for (pI —p, , )/(pI
+p, , ) and!„are found to be about 5/o to 10% higher for
the former and about 15% to 20% higher for the latter
than those reported in the literature [4]. Experimental
errors can be found due to the wavelength quantization

by the lateral boundary conditions. The pattern typically
involves 20 to 50 wavelengths, so the experimental error
is less than 5%. We think therefore that the main part of
the error is due to the use of Eq. (I ) that neglects dissipa-
tion.

For T,. —T fixed, the critical acceleration for the insta-
bility onset increases as a function of the frequency. W' e
have checked that the rough estimation of Eq. (3) pre-
dicts the correct order of magnitude. It is more interest-
ing to consider the behavior of ap as T T, This is

displayed in Fig. 4 for different values of f We have.
plotted here ao/fk (k is the pattern wave number at on-

set) as a function of 1
—T/T, . Qualitatively, the diver-

gence of ap as T T, is due to the vanishing density
difference and to the increasing dissipation as smaller
wavelengths are involved. This is clearly observed from
our data. Quantitatively, according to Eq. (3), ap/fk
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with the saturation of the wavelength (except for f= 70
Hz). Slight boundary effects that locally bend the pat-
terns can be seen in the Fig. 1 photographs, but we have
observed that the pattern orientation varies from one ex-
periment to the other. There is no contradiction, howev-

er, between our experiment and the analysis of Ref. [5]
which was performed in the limit where capillarity is the
dominant term in the dispersion relation, and assuming
negligible dissipation. In the vicinity of the critical point,
surface tension vanishes faster than the third power of the
density difference. Thus the gravity term is still the dom-
inant one even though the wavelength is becoming very
small. Moreover, as shown above, dissipation cannot be
taken into account as a small perturbation. It has been
very recently observed that a pattern with parallel lines
can be also obtained with ordinary liquids in the
capillary-wave regime if the dissipation is large enough

As the vibration is increased further, these wave pat-
terns display a transition to spatiotemporal chaos via er-
ratic nucleation of defects, as is very often observed in

pattern-forming instabilities. Some of these defects are
already apparent in Fig. 1(b).

We have presented in this Letter a first step in the
study of the interaction between an instability and a
phase transition. We expect to improve our temperature
stability in order to perform experiments closer to the
critical point, but as pointed out above, theoretical
analysis should also be done in order to answer open
questions about the quantitative effects of dissipation, L-
V mass transfers, and compressibility. More generally,
we expect interesting new phenomena from the interac-
tion between the interface instability and the L-V phase

transition. This is because the relevant microscopic
length scale of the problem, i.e., the interface thickness,
increases (at least until gravity affects the process)
whereas the macroscopic length scale, i.e., the instability
wavelength, decreases near the transition. Consequently,
both the instability and the phase transition might there-
fore be strongly affected by their coupling which in-

creases near the critical point.
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