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Three-Dimensional Supersonic Homogeneous Turbulence: A Numerical Study
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A turbulent homogeneous perfect gas with no forcing is computed using the piecewise-parabolic
method on a uniform gird of 256 zones. The initial rms Mach number is one. The main results are (i)
persistence of a quasisupersonic phase with strong density contrasts over several shock formation times;
(ii) late appearance of a post-supersonic self-similarly decaying regime in which the total velocity spec-
trum varies with wave number as k; and (iii) both shock curvature and velocity gradients are impor-

tant mechanisms of vorticity production in the first half of the supersonic phase.

PACS numbers: 47. l0.+g, 47,40.11'i

The investigation of compressible turbulence is of fun-

damental importance to a number of research areas in

IIuid dynamics. In astrophysics, compressible turbulence
is likely to play an important role in the process by which

stars are formed from dense clouds of interstellar gas, in

particular, in slowing down the collapse. In aeronautical
engineering, compressible turbulence occurs in the wakes
of supersonic projectiles and may play an important role
in the design and operation of scramjet engines.

Most of the analytical and numerical studies in three
dimensions on turbulent compressible fluids are confined
to the subsonic regime [I]. We report here the most

significant results obtained using the piecewise-parabolic
method (PPM) [2], on a uniform mesh of 256 zones of
size hx, for a turbulent decaying flow at an initial rms

Mach number of unity.
Our model equations are the fluid dynamical equations

for a perfect gas without macroscopic dissipation for the
fluid velocity u and internal energy e, together with the
continuity equation for the density p. The sound speed is

c =y(y —l)e and we take y=1.4. Direct measurements
of PPM's numerical damping of sinusoidal shear fields

[3] indicate an eA'ective numerical viscosity which varies

with wavelength A.
=J2Lo and Mach number M as

v, tr/B. =0.462(M+ 4 ) ' (Lo/I5x) . This form of v, tr

assumes a dominant mode. Direct measures of PPM's
dissipation [3] show that weak waves (advected by larger
modes) decay by a factor of I/e after they have traversed
a distance which scales as OI./hx) times their own

wavelength k. In particular, a mode with A, =10hx de-

cays by I/e after it has traversed IOOA. .
We choose units so that the mean density po and initial

mean sound speed co are both unity. Boundary condi-
tions are periodic in the three principal directions of the
cubical computational domain. The initial conditions are
random and independent fluctuations in the velocity, den-

4
—2(a 2/a 2)

sity, and pressure with spectrum: E(k) —k e
where k0=2. Modes are initia1ly excited up to k =32.
We set the initial rms fluctuations in the density Bp
=(p —po)/po, pressure 6p =(pe —poco)/poco, and veloci-

ty BUO to 20%, 20%, and 1%, respectively. The initial

density contrast Ap =p „. „/p;„ is close to 4. Other sets of
initial conditions tested both in 2D and in 3D at lower

resolutions, with PPM as well as Navier-Stokes solvers

[4], indicate a lack of sensitivity of the results in a wide

range of initial parameters.
This numerical simulation, run Q42, was performed on

a 256 mesh, and allowed to evolve through a time
t =3.2r„,, where r„., is the acoustic time of the energy-
containing scale and is the unit of time for these compu-
tations. In the unperturbed flow, a sound wave takes 2

time units to cross the domain of our simulation. We
define .R„as the wave numbers associated with the
compressional (x =c), solenoidal (x =s), and total (x
=v) components of the velocity field u =u'+u':

Q OO ]/n

8„,= k "E"(k)dk E"(k)tlkao ~J

where E are the power spectra of the c. component, s
component, and total velocity. The ratio g =E"/E'
(compressional/total) is yet another parameter of the ini-

tial conditions; we take g-9%.
Temporal evolution of a supersonic flow In the ab.—-

sence of a source term, the kinetic energy of a compressi-

ble flow decays inexorably as a consequence of shock for-

mation and dissipation of small scale eddies produced by
vortex stretching. In our simulations dissipation on small

scales is due to the finite mesh, in real systems dissipation

is typically due to molecular diAusion. After a first

period of nonlinear wave steepening and mode coupling
the subsequent decay of kinetic energy appears to take

place in t~o distinct quasisteady phases separated by a

short transitional period: first, a compressional period
dominated by shock formation and shock interactions,

and second, a period dominated by vortex interactions

and vortical decay. This is revealed in the temporal evo-

lution of several small-scale variables such as R„or the

density contrast h,p. As seen„e.g. , in the Taylor wave

numbers (Fig. I) first is a period of rapid growth, up to

t] —0.3. This onset phase corresponds to the formation of
shocks which, as coherent nonlinear structures, feed

compressional modes of all wave numbers at the same
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time. At t-t ~, the density fluctuations bp reach a value
of 52%, the density contract hp-60, and p;„=0.14.
From t

~
onward, the compressional mode R2 „ is roughly

constant. Next is a quasisteady supersonic phase for
r~ &r &t2 with t2-2. l, during which the solenoidal
modes, represented by %2,„continue to grow, more slow-

ly than the compressional component, and the density
contrast remains at a high value, on average 45, with lo-
cal fluctuations due to the presence of many strong shocks
and their interactions. During this second phase a rough-

ly linear growth for R„,occurs, at a rate which increases
with n for n 1, 2, 3, and 4. For n &4, JV„, increases
abruptly at time t ~, and then increases at a rate indepen-
dent of n until time t2. During this second phase local re-
gions of supersonic flow can be found. Finally we have a
post-supersonic phase in which the Mach number is sub-
stantially lower than unity.

During this third phase, both the density contrast hp
and the density fluctuations bp are much smaller (hp-4
and bp-O. I5 at tm,. „=32r „), and t.he . characteristic
wave numbers R„are roughly constant in time. Compar-
isons with similar simulations [4] run on 64, l28, and
256 meshes indicate that (i) the saturated values of R„
increase with mesh resolution, as they would increase
with Reynolds number in a Navier-Stokes system; these
wave numbers indicate the scales at which various deriva-
tives of the velocity are important for the simulation at
hand; (ii) the relative dominance of the compressive or
solenoidal modes at high wave numbers, as well as the
times at which R„abruptly change and saturate (name-
ly, t& and tz), are essentially independent of the mesh
resolution.

The initially imposed dominance of solenoidal modes is
recovered after a short period of time Puring which the
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FIG. 1. Temporal evolution of the characteristic Taylor wave

number Sq separated into its solenoidal (circles), longitudinal
(crosses), and total (solid line) components. Note the onset of
the quasisteady supersonic phase on .8, at t]-0.3 and that of
the post-supersonic phase on .R, at t2-2. 1.

compressional modes overpower the solenoidal ones in the
small scales due to strong and rapid shock formation

preceding slower vortex formation. After shocks form the
rms Mach number, M„ initially equal to 1.1 with excur-
sions up to M,.„-6.2, decays steadily and linearly dur-

ing t 6 [0.4, 2.0]. M, is below unity on average after
t -0.6. At the final time of the computation, t,. „
=3.2i„.„M,=0.36, but the maximum local Mach num-

ber is still M~„.„=1.5, as can be inferred from histograms
[4]. In fact, at t .,„supersonic flow fills 0.03% of the
volume distributed in several dozen small regions.

The time for compressional modes to develop fully is

considerably shorter than the time for the solenoidal

modes to develop in the system examined here. This
disparity is clearly seen in the Taylor scales shown in Fig.
I. In fact, all of the compressional modes jump simul-

taneously from their initial small values (essentially zero
for k & 5) to within 86% of their peak values during
t 6 [0.3t~, t~]: All compressional modes are excited to-
gether when shocks form by time t~. The solenoidal
modes grow more slowly and at difTerent times:
Solenoidal modes of shorter wavelengths take longer to
reach their peak amplitudes than do those of longer wave-

lengths, indicative of a forward cascade of energy. The
time for all of the solenoidal modes to develop fully seems
to be linked with the eddy rotation time of the energy
containing scale, which is close to t2.

Given our initial conditions, and for almost any super-
sonic and random initial conditions, the entire velocity
field (not just the initially compressional component) con-
tributes to shock formation. In general, a random pres-
sure field is not consistent with stable eddies. Further, in

run Q42 variations in the pressure field are about 6 times
too small to support stable eddies. Hence the initial ener-

gy in the solenoidal field is quickly converted into
compressional energy as elements of gas moving in rough-

ly straight lines collide. In order for an eddy to equili-
brate, there must be enough time for the eddy to turn
over at least once. However, in order for a shock to de-

velop, two parts of a flow moving in opposite directions at
supersonic speeds need only move a fraction (less than
half) of their initial distance of separation. The distance
of half of the energy containing scale corresponds to both
a typical eddy's diameter and the typical initial separa-
tion of elements of gas that collide energetically. Both
sets of motions come from the same random velocity field,
so they typically have similar amplitudes. Hence, the ra-
tio between the time of shock formation and the time of
eddy formation is roughly the ratio of the distances given
above, which is the ratio of the radius of a circle to its cir-
cumference; in fact, r2lt ~-7.

Characteristic structures of a decaying supersonic
Pow.—The temporal evolution of the solenoidal E'(k)
and compressional E'(k) components of the velocity
power spectra follow the integrated variables we have de-
scribed above. Small scales develop as the low evolves.
E' settles to the form k" at t —t ~ and then decays nearly
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FIG. 2. Velocity spectra averaged over the time span
It 2 tm, „] The compre-ssio. na.l, solenoidal, and total components
are denoted respectively by crosses, circles, and a solid curve.
The power-law fits E'—k and E'—k ' are shown as
straight lines. The error bars shown are based on convergence
studies of PPM.

self-similarly, with a spectral index i, -2.04+0.17 on
average for t C [0.3,2. 1]. However, the evolution of F.' is
much slower: A self-similar regime occurs only after
t-tq. The total spectrum is dominated at all scales, ex-
cept for a short time early in the quasisupersonic phase,
by its solenoidal component.

We calculated the averaged spectra in the quasisuper-
sonic phase t C [0.3,2. 1] and in the post-supersonic
phase, t C [2.1,3.2]. Assuming that this averaging pro-
cedure is justified, the spectral indices in the former phase
are close to 2 for all velocity spectra, as is expected for a
discontinuity, the structure that must be dominant during
that time. However, in the last phase, shown in Fig. 2,
with the s, c, and v components denoted by circles,
crosses, and the solid curve, respectively, the spectral in-
dices differ: Whereas the compressional component re-
tains a rather steep spectrum, i, —1.74+0.17, the sole-
noidal component has an index i, -0.89+ 0.27. These
spectral indices are taken for k E [5,25], and the error
bars stem from convergence studies [3]. Both conver-
gence studies and direct measures of numerical damping
rates [3] indicate that the mode amplitude of waves span-
ning 10hx are in error by —17% (corresponding to a 34%
error in mode energy). Numerical errors have a smaller
effect on all longer wavelength modes, and numerical dis-
sipation increases rapidly and dominates as wavelength
decreases from 10hx. In the simulation presented here,
IOhx corresponds to a wave number of k-25, and we

identify k =25 as being roughly the border between the
inertial and numerical dissipation ranges in run Q42.

The total velocity spectrum is quite flat during the final

period. This may be a result of our limited grid resolu-
tion; it may also be due to hysteresis: The history of a su-

personic phase in a now-subsonic flow leaves traces. This
effect was already encountered in our 2D computations,
~here filamentary structures in entropy, density, and vor-
ticity were observed at late times [4], with strong local
vortices superimposed onto warped vorticity sheets [5]. It
is also reminiscent of the spectrum of a passive scalar ad-
vected by an incompressible flow.

The comoving evolution of vorticity is given by dttt/dt
=B+S, with the inhomogeneous baroclinic term B
= (Vp x Vp)/p and the linear in t0 (stretching and
compression terms) S =(ttt. V)u —ttt(V. u). From inspec-
tion of the histograms of both S and B, we infer that in

the early supersonic phase, the baroclinic and the linear
terms are roughly balanced [4]. This indicates that vorti-

city production through shock curvature (including inter-
secting shocks) is as important as the linear term in run

Q42.
To assess the relative importance of S and B, we also

analyze the power spectra of their norms [4]. We find

8&S most of the time and for most scales. However,
the two terms are comparable during the time of initial
growth of the velocity —up to when the compression first
becomes stationary (t-t~). The linear term dominates
later on. In an initially supersonic flow, the baroclinic
term acts as a trigger of vorticity production on small
scales: Intersecting shocks plant the seed of vorticity at
short wavelengths which then undergo an exponential
growth via the linear terms during the intermediate phase
I] & t & t2. Vortex sheets are established at shock inter-
sections, and these sheets subsequently roll up due to the
familiar shear instabilities. These vortex tubes are also
unstable and are disrupted by kink instabilities, in which

the phenomenon of vortex stretching plays a major role.
This sequence of events is most clearly revealed in anima-
tions of volume rendered images of the flow which we

have generated in our "numerical laboratory" [4].
A wide distribution of vorticity is generated during the

first half of the simulation. At t =1.48 the average and
rms vorticities are 47. 1 and 60.0; initially these values are
13.0 and 14.1, respectively. Vorticity decays in the
second half of the simulation: By 1=2.96 the average
and rms vorticities are 35.9 and 42.2„respectively. At
I. =2.96, each component of vector vorticity is exponen-
tially distributed. At earlier times, during which the sys-
tem undergoes rapid evolution, the vorticity distribution
is more complicated.

Even though the flow is subsonic at late times there are
still entropy fluctuations due to shocks set up by high
Mach number initial conditions [4]. The slow rate at
which the entropy homogenizes is a measure of PPM's
low numerical diffusion [3]. Entropy fluctuations, with

their associated density fluctuations, make our flow (even
at late times) violate the assumption of nearly uniform

density which is typically made in analytical studies of
low Mach number flow [6]. Thus, the arguments leading
to steepening of the classica1 ——', Kolmogorov spectrum
through coupling of vortices to acoustic waves may not
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apply here.
In conclusion, in this paper we have shown the ex-

istence of two distinct temporal phases in the decay of an

initially supersonic flow: a quasisupersonic phase in

which many strong shocks interact, creating substantial
vorticity, and a post-supersonic phase during which the

energy spectrum, dominated by its vortical component,
decays in a self-similar way following a shallow spectrum
close to k . The mechanism by which vorticity is pro-
duced in a supersonic flow differs in a substantial way
from that in a subsonic or incompressible flow. In the su-

personic case, phase-coherent shocks rapidly grow, so that
the flow does not evolve under the same conditions as ran-

dom vortex stretching, which is expected to be dominant
in an incompressible flow.

More data analysis is in progress, in particular con-
cerning correlations between density, entropy, and vorti-

city, a striking phenomenon in the 2D context [4], and

questions motivated by incompressible studies: correla-
tions between strain tensor and vorticity, exponentially
distributed small-scale variables indicating intermittency,
and the persistence of large-scale vortex filaments [7]. A
detailed description of the characteristic structures, with

3D graphics in particular, that emerge in a turbulent
compressible flow is beyond the scope of this paper and is

being tackled elsewhere [4]. An initially love Mach num-

ber run will help us examine the nature of a subsonic
flow, and help assess the long term effects of entropy
structures produced by strong shocks.
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