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Reinterpretation of Jordan-Brans-Dicke Theory and Kaluza-Klein Cosmology
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We emphasize that it is the Pauli metric, not the Jordan metric, which describes the massless spin-two
graviton in the Brans-Dicke theory. Similarly in the "Jordan-Brans-Dicke theory" based on Kaluza-
Klein unification, only the Pauli metric can correctly describe Einstein's theory of gravitation. This
necessitates a completely new reinterpretation of the "old" Kaluza-Klein cosmology as well as the
Brans-Dicke theory. More significantly our analysis shows that the Kaluza-Klein dilaton must generate
a fifth force which could violate the equivalence principle.
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Recently the cosmology based on the Brans-Dicke
theory [1,2] has been studied by many authors [3,4] in an
attempt to construct a realistic alternative to the standard
model. A characteristic feature of the Brans-Dicke
theory is that the Brans-Dicke scalar field plays the role
of Newton's constant. As a result, the Brans-Dicke the-
ory makes Newton's constant time dependent, and thus
can naturally realize Dirac's conjecture [5]. A less well

appreciated but nevertheless very important fact is that
the Brans Dicke L-agrangian admits two spaceiime
metrics, the Jordan metric II1 and the Pauli metric fbj,
which can actually describe two diferent physics In fa. ct
it allows infinitely many space time me-trics which are
logically acceptable but physically distinct, as we will

show in the following. This poses a serious problem, be-
cause one must decide which metric (and for what
reason) should be identified as physical before one can
discuss the physics.

Exactly the same problem arises in the Kaluza-Klein
theory [7,8], because in this higher-dimensional unifica-
tion the Kaluza-Klein dilaton plays the role of the
Brans-Dicke scalar field which makes the Jordan metric
(the precise meaning of which we will define shortly) cou-
ple to different matter fields with different strengths [9].
So in this unification a central issue to settle is which
metric one must identify as the physical space-time
metric (i.e., the metric which is responsible for Einstein's
theory of gravitation). The purpose of this Letter is to
settle the issue and to clarify the existing confusion in the
literature.

We first discuss an inherent ambiguity which exists in
the Brans-Dicke Lagrangian, and show how the Lagrang-
ian allows infinitely many logically acceptable metrics
which describe different physics. But we prove that only
the Pauli metric can represent the massless spin-t~o
graviton, and thus can correctly describe Ei nstein's
theory of gravitation. This means that, as long as one
wants to interpret the theory as a generalization of
Einstein's theory, one must treat the Pauli metric as
physical. In the Kaluza-Klein theory we arrive at essen-
tially the same conclusion, but for a different reason.
Here one cannot treat the Jordan metric as physical, be-
cause it violates the positivity of the Hamiltonian. At the

e' [R+roa'y""(B„cr)(8,o)]
16xG

—Jy[-,' y""(8„+)(8„+)+v(e)]. (3)

This shows that, in the limit that the Jordan metric be-

same time one must accept the Pauli metric as physical
[9,10], as long as one wishes to achieve the unification of
Einstein's gravitation with other interactions from the
Kaluza-Klein theory. This necessitates a completely new

reinterpretation of the "old" Kaluza-Klein cosmology
which identifies the Jordan metric as physical [11,12].
More significantly our analysis shows that the Kaluza
Klein dilaton must create a fifth force which could
violate the equivalence principle [13]. This is because
the dilaton makes the Pauli metric couple to the matter
fields "abnormally" in the Kaluza-Klein theory.

Let us begin with the following Brans-Dicke Lagrang-
ian [2]:

Xao=Xp+L),

J p
= Jy[qR+ ~—y~"(e„q)(ap)lq],

~, = —Jy[-,' yn"(a„~)(e„~)+v(~)],
where y=~dety„„) and y„„ is what we call the Jordan
metric [1], p is the Brans-Dicke scalar field, ra is the
Brans-Dicke coupling constant, and X~ is the Lagrangian
for the matter field %' which we choose to be a scalar field
for simplicity. Notice that here X~ does not depend on p,
which is one of the original assumptions of Brans and
Dicke. However, it is very important for our purpose to
keep in mind that the theory can easily be generalized in

such a way that X~ does depend on p, to make the Jordan
metric couple to different matter fields with different
strengths. Indeed this generalization is precisely what
one finds in the Kaluza-Klein theory [8,9], or in the gen-
eralized Brans-Dicke theory proposed recently by
Damour, Gibbons, and Gundlach [4]. Now let us intro-
duce the Brans-Dicke dilaton field cr by

p = ( I /16n G )e'

where a is a nonvanishing constant. In terms of the dila-
ton one has
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comes flat, the dilaton has a positive kinetic energy if and
only if to is positive. So if one wants to treat the Jordan
metric as physical, one must require co to be positive to
satisfy the positivity of the Hamiltonian .Indeed this is

precisely what Brans and Dicke did in their original pa-
per [2].

To discuss an inherent ambiguity in the Brans-Dicke
theory we consider the following conformal transforma-
tion:

(4)

where p is an arbitrary constant. Under the conformal
transformation we have (up to a total divergence)

t I/2

e ' [R'+to'a' y'""(r)„cr)(r)„o)l,
16xG

(s)
y'"e —t' [ 'y-""(a„-~)(a,e)+e t' V(+)],

where

a'=a —p,
to'=(tea'+3aP ——,

' P')/(a —P)'.
This clearly shows that as far as Xo is concerned the La
grangian is form invariant under the conformal transfor
mation (when a~p). Only X~ breaks the conformal in- &p =~p+hp (6)

where gp, is the flat Minkowski metric. With this we find

variance. This tells us two things. First, in the absence
of any matter field, one cannot tell which conformal
frame one is in. There is simply no way of telling the
difference between yp, and yp', . Second, in the presence
of the matter field, one has infinitely many logically ac-
ceptable metrics which can describe different physics.
Indeed any yp'„can be chosen as "physical" as long as co'

remains positive. This confirms the fact that the theory
has an inherent ambiguity. The only way to resolve the
ambiguity is to specify how the physical metric should

couple to the matter field. Brans and Dicke have chosen
the Jordan metric as physical by insisting that the physi-
cal metric must couple to the matter field "normally"
without any conformal factor (insisting that the Brans-
Dicke scalar field should not couple to the matter field).
Similarly in the generalized Brans-Dicke theory [4), the
authors have chosen the Jordan metric as physical by in-

sisting that the physical metric must couple normally only
to the ordinary matter.

Now we show that the physical metric so chosen does
not represent the massless spin-two graviton, and thus
cannot be identified as the metric which is responsible for
Einstein s theory of gravitation. To show this we expand
the Jordan metric around the vacuum and let

, (a„p.,)—(a„p„-)-(a„p»)+ (a„p„,)-(a„p„) (B„p„—,)—(8„p„,)+ a (B„o')(8„o)
1 1 1 1 1 2N+3

+ interactions,
where all the contractions of the space-time indices are
made with the Hat metric and

ppv hp v+ ao'gp v ~ (8)

With the normalization a=I/42to+3 the Lagrangian
(7) describes the generally invariant gravitational in-

teraction between the massless spin-two field pp, and the
(normalized) dilaton field cr. This means that it is p„„
but not hpv, which describes the massless graviton. No-
tice that hpv does not even describe a mass eigenstate.
From this we conclude that the metric which is responsi-
ble for Einstein's theory of gravitation is not y„„, but g„„,
gii en by

(cr/42co+ 3)
gpv jpv e

which we call the Pauli metric [6].
In terms of the Pauli metric the Brans-Dicke Lagrang-

ian is neatly written as

Mao = — g [R+ , g~'(t)„cr)(8„o)]—

+Jge ' g""[-,' (r)„e)(8„+)+e ' V(+)] . (10)

Notice that the Pauli metric can be deftned even when co

is negative, as long as co becomes larger than
More importantly the gravitational coupling to the dila-

tonic matter becomes "normal, " but to the ordinary
matter "abnormal, " after the conformal transformation
This means that the Lagrangian (10) describes a "new"
Brans-Dicke theory. In the "old" Brans-Dicke theory the
gravitational coupling to the matter field is such that the
motion of an ordinary particle should follow the geodesic
determined by the Jordan metric [21. In contrast in the
new theory it is the dilatonic particle (not the ordinary
particle) which should move along the geodesic, but now

along the geodesic determined by the Pauli metric.
It has often been claimed that the Brans-Dicke theory

can be derived from Kaluza-Klein unification. This claim
has served to provide a (much needed) "philosophical"
justification for the Brans-Dicke theory [11]. However,
we emphasize that this claim should be taken with a great
care, because this claim becomes true only if the Pauli
metric is identified as physical. This means that the
Brans-Dicke theory in the strict sense does not follow

from Kaluza-Klein unification. To see this consider a
(4+ n)-dimensional Kaluza-Klein unification with the
unified metric y~8 (A, B =1,2, . . . , 4+n), where the
internal space is made of an n-dimensional isometry
group which acts freely on the (4+n)-dimensional uni-

fied manifold [8,9]. Let y~8 = y„„S&,b (p, v=1, 2, 3,4;
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a, b =5,6, . . . , 4+n) in a block-diagonal basis, where y„„is what we identify as the four-dimensional Jordan metric and

p,b is the n-dimensional internal metric. Now let us define the Kaluza-Klein scalar field p and the normalized internal

metric p,b by

(b
= Idet(bab I pub =(b gob (Idetpab I

=1) . (1 i)
Then the isometry automatically reduces the (4+n)-dimensional Einstein-Hilbert Lagrangian to the following Cho-

Freund Lagrangian [8,9]:

~y ~l/2 R+4 g~l/n pa vpF aF b pv yP. (D p. )(D p b)
16xG 4n (bz 4

(12)+R (p b )+A + 1( (I detpab I

—»
where R(p,b) is the internal curvature obtained with p,b,
F„„' is the Kaluza-Klein gauge field, A is a (4+n)-
dimensional cosmological constant, and k is a Lagrange
multiplier. Notice that as far as the Kaluza-Klein scalar
field is concerned, (12) looks very much like the Brans-
Dicke Lagrangian. Indeed with

the matter fields couples normally to the Jordan metric.
Second, the Jordan metric couples to the Kaluza Kle-in

scalar geld with a negative m. This shows us that there is

no way to guarantee the unitarity (i.e., the positive
definiteness of the Hamiltonian) of the Lagrangian (12),
if one tries to identify the Jordan matrix as physical.
This clearly rules out the Jordan metric as unphysical
[9,10].

Notice that although to= —(n 1)/n —is not positive
definite, it remains larger than —

1 for any positive in-

teger n. This means that the unitarity of the Lagrangian
(12) can be assured with a simple conformal transforma-
tion of the metric. To see this we introduce the Pauli

n o by

(b
= ( I/16)rG )(() '/', t0 = —(n —1)/n,

one finds

„(8„(b)(By)XcF= —Jy pR+toy"" +other terms

(i3)

g„,=y y„„cr i J(n+2)/n in((), (i4)

metric g„„and the Kaluza Klein dilato
However, there are in fact two fundamental differences
between (1) and (12). First, the Jordan metric in (l2)
couples abnormally to the matter fields Indee. d none of

and find in terms of the new metric [9]

g [R+4&Ge((n+2)/ni' crp F aF b+ ( (g &)2+R( )
—((n+2)/n)' a+A —(n/(n+2)l / cr16' Pab pv pv 2 p& pab e

—
4 (D„p")(D„p.b)+Z(~detp, bi
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This proves that the Pauli metric not only restores the un-

itarity, but more importantly describes the massless spin-
two graviton.

We conclude with the following remarks.
(A) It has been a tradition to treat the Jordan metric

as physical in the Brans-Dicke theory, ever since Brans
and Dicke proposed to do so. The justification for this is
that by construction the Jordan metric is the one which
makes the ordinary matter (and only the ordinary
matter) satisfy the so-called weak equivalence principle
[2]. This means that the ordinary matter must follow the
geodesic determined by the Jordan metric. But we em-
phasize that the weak equivalence principle based on the
Jordan metric is not a first principle and is subject to the
following criticisms. First of all it is not universal, be-
cause it does not apply to all rnatter fields equally. Obvi-
ously the dilatonic matter (as well as the dark matter in
the generalized Brans-Dicke theory) does not follow the
geodesic determined by the Jordan metric. Second, it is
ad hoc, because a priori there is no reason why only the
ordinary matter should follow the geodesic determined by

the physical metric. It is perfectly possible that the dila-
tonic matter (or the dark matter) could play a more
"fundamental" role than the ordinary matter in our
Universe. If so, the physical metric could turn out to be
the one which makes the dilatonic matter (or the dark
matter), not the ordinary matter, to satisfy the weak
equivalence principle.

(B) A fundamental assumption in the theory of gravi-
tation is that the gravitational interaction is generated by
the massless spin-tao graviton. Once one accepts this
proposition, one must accept the Pauli metric as the
physical space time metric i-n the Brans Dicke theory-
This is unavoidable especially when one wishes to com-
pare Einstein's theory with the Brans-Dicke theory. This
necessitates a completely new reinterpretation of the
Brans-Dicke theory, in particular the "old" Brans-Dicke
cosmology [3,4] which identifies the Jordan metric as
physical. As importantly our analysis sho~s that in the
Brans-Dicke theory there must exist a fifth force acting
on the ordinary matter which could violate the
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equivalence principle. This is so because the ordinary
particles in the Brans-Dicke theory must follow the geo-
desic determined by the Jordan metric.

(C) In the Kaluza-Klein theory the unitarity rules out
the Jordan metric as unphysical. More importantly, here
again one must identify the Pauli metric as physical, as
long as the purpose of the higher dim-ensional uniftcation
is to unify Einstein's theory of gravitation with other in
teractions. This means that all the results of the "old"
Kaluza- Klein cosmology which identifies the Jordan
metric as physical [11,12] should be reanalyzed in terms
of the Pauli metric. Remarkably the "new" unified

cosmology [14] provides us with an attractive alternative
to the big-bang cosmology which could circumvent the
major defects of the standard model without necessarily
compromising its successes. First of all, Dirac s conjec-
ture can naturally be realized in the unified cosmology.
Second, the dilatonic matter could couple more strongly
to gravitation than the ordinary matter, and thus could

play the role of the dark matter of the universe. Finally
the unique dilatonic potential could allow us to have a

generalized inflation [14] in which a universe without any
horizon becomes possible. In fact, if necessary, the dila-

ton could play the role of the "inflaton. "
(D) A most remarkable consequence of our analysis is

that it confirms the existence of a fifth force in the
Kaluza-Klein theory which could violate the equivalence
principle [13]. To find out what kind of fifth force one

can expect from the Kaluza-Klein theory, we notice first

that the dilaton must have a very small mass because it

appears as a pseudo Goldstone particle in the unified

theory [15]. Furthermore the dilaton modifies gravitation

because it modifies Newton's constant. This implies that
the Kaluza-Klein dilation is most likely to create a
"medium-range" ftfth force which couples "weakly" to
the matter field. We notice that this prediction is per-

fectly compatible with the present experimental limit on

the fifth force [16].
(E) Finally we emphasize that the above conclusions

on the Kaluza-Klein cosmology and the fifth force must

apply to all the unified theories which are based on

higher-dimensional unification, including the supergravity
and the superstring. So the prediction on the Kaluza-

Klein fifth force could provide a straightforward means to
test the validity of the very idea of higher-dimensional

unification.
It is a great pleasure to thank S. O. Ahn for encourage-

ment. This work is supported in part by the Ministry of

Education and the Korea Science and Engineering Foun-
dation.

[I] P. Jordan, Ann. Phys. (Leipzig) 1, 218 (1947); Schwer
kraft und Weltall (F. Vieweg und Sohn, Braunschweig,
1955); Y. Thirry, C. R. Acad. Sci. (Paris) 22, 216
(1948).

[2] C. Brans and R. Dicke, Phys. Rev. 124, 921 (1961); R.
Dicke, Phys. Rev. 125, 2163 (1962).

[3] D. La and P. Steinhardt, Phys. Rev. Lett. 62, 376 (1989);
E. Weinberg, Phys. Rev. D 40, 3950 (1989); P. Stein-
hardt and F. Accetta, Phys. Rev. Lett. 64, 2740 (1990).

[4] T. Damour, G. W. Gibbons, and C. Fundlach, Phys. Rev.
Lett. 64, 123 (1990).

[5] P. A. M. Dirac, Nature (London) 136, 323 (1937).
[6] W. Pauli, in Schwerkraft und Weltall (see Ref. [I]); M.

Fierz, Helv. Phys. Acta 29, 128 (1956).
[7] T. Kaluza, Sitz. Preuss. Akad. Wiss. 1921, 966; O. Klein,

Z. Phys. 37, 895 (1926).
[8] Y. M. Cho, J. Math. Phys. 16, 2029 (1975); Y. M. Cho

and P. G. O. Freund, Phys. Rev. D 12, 1711 (1975); Y.
M. Cho and P. S. Jang, Phys. Rev. D 12, 313S (1975).

[9] Y. M. Cho, Phys. Lett. B 186, 38 (1987); 199, 358
(1987); Phys. Rev. D 35, 2628 (1987); Y. M. Cho and D.
S. Kimm, J. Math. Phys. 30, 1570 (1989).

[10] T. Appelquist and A. Chodos, Phys. Rev. D 28, 772
(1983); D. Gross and M. Perry, Nucl. Phys. B226, 29
(1983).

[I I] P. G. O. Freund, Nucl. Phys. B209, 146 (1982).
[12] A. Chodos and S. Detweiler, Phys. Rev. D 21, 2167

(1980); E. Kolb and R. Slansky, Phys. Lett. 135B, 378
(1984); S. Randjbar-Daemi, A. Salam, and J. Strathdee,
Phys. Lett. 139B, 388 (1984); R. Abbott, S. Barr, and S.
Ellis, Phys. Rev. D 30, 720 (1984); Q. Shafi and C. Wet-
terich, Phys. Lett. 152B, 51 (1985); K. Maeda, Mod.
Phys. Lett. A 3, 243 (1988).

[13] Y. M. Cho and D. H. Park, Nuovo Cimento 105B, 817
(1990); Gen. Relativ. Gravit. 23, 741 (1991).

[14] Y. M. Cho, Phys. Rev. D 41, 2462 (1990). See also Y.
M. Cho, in Proceedings of the Fifth Marcel Grossmann
Meeting, edited by D. Blair and M. Buckingham (World
Scientific, Singapore, 1989).

[15] Y. M. Cho and S. W. Zho, Seoul National University Re-

port No. SNUTP 90-16 (to be published); Y. M. Cho,
Seoul National University Report No. SNUTP 91-57 (to
be published).

[16] E. Fishbach, D. Sudarsky, A. Szafer, C. Talmadge, and

S. Aronson, Phys. Rev. Lett. 56, 1 (1986); Ann. Phys.
(N. Y.) 182, 1 (1988).

3136


