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Precursory Singularities in Spherical Gravitational Collapse
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General conditions are developed for the formation of naked precursory ("shell-focusing") singulari-
ties in spherical gravitational collapse. These singularities owe their nakedness to the fact that the gravi-
tational potential fails to be single valued prior to the onset of a true gravitational singularity. It is ar-
gued that they do not violate the spirit of cosmic censorship. Rather, they may well be an essentially
generic feature of relativistic gravitational collapse.
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What are the generic features of spherical gravitational
collapse? Perhaps one of the most surprising aspects of
classical general relativity is the fact that we still do not
have a definitive answer. One would hope that the dy-
namics of the situation is now well understood. This is in
fact not the case. The cosmic censorship hypothesis
which, in very genera1 terms, asserts that singularities
which develop from regular initial conditions have no
causal influence on spacetime has yet to be formulated
[1]. Indeed, there is a body of evidence which suggests
that the hypothesis may not hold [2]. Failure of the
cosmic censorship hypothesis would be a disaster for clas-
sical general relativity in particular and for physics in
general since it would indicate that physical laws may
have only limited applicability. Recent numerical [3] and
analytic [4] studies have shown that possibly naked singu-
larities can also arise in nonspherica1 collapse.

The purpose of this Letter is to examine the general
conditions under which a naked "shell-focusing" singular-
ity develops in spherical gravitational collapse. No in-
tegration of the Einstein field equations is performed.
Rather, it turns out that only the most general functional
properties of the spacetime are needed. It is shown that
the development of naked shel)-focusing singularities can
be traced to the breakdown of the gravitational potential
which becomes multivalued prior to the onset of a true
gravitational singularity which is clothed in an event hor-
izon. It is argued that this development can be vie~ed as
an essentially generic feature of spherical gravitational
collapse, and that it does not represent a violation of the
spirit of cosmic censorship.

Figure I represents a typical spherical gravitational
collapse in terms of advanced Bondi coordinates (v, r)
(see below). The boundary of the object Z collapses to
zero volume at C. A signifies the onset of a "singularity"
at the center of symmetry. The curve AB traps photons
as shown, and evolves into the Schwarzschild horizon to
the exterior of Z which we take to be vacuum.

We use advanced Bondi coordinates [5] (v, r, 8,$) so

ds =2cdv dr cz(l —2m—/r)dv~+r ~dD, ~

where c =c(v, r) )O, m =m(v, r) which we take to be
~0, and dQ =—d8 +sin Bdp . Note that m can be in-

variantly defined as the effective gravitational mass [6].
Radial ingoing null geodesics have 4-tangents k'
= —b;/c. We use the coordinate freedom in v to set
c(v,0) =I. (This choice is inconsistent with the "self-
similar" case, which is exceptional; see below. ) In order
to examine the regularity conditions, and to distinguish
"singularities, " we make use of the Kretschmann invari-
ant

K =R,p„gR'~",

where R,~„s is the Riemann curvature tensor. [It is

FIG. 1. Two-dimensional picture of the spherical gravitation-

al collapse of a bounded object (with boundary Z) to zero

volume of C. A "singularity" at the center of symmetry begins

at A (v =r=0). The apparent horizon in the matter AB
Ir =2m(v, r)l is shown schematically. Two null cones are

shown, in the matter and in the vacuum exterior on the

Schwarzschild horizon. The interior event horizon is the outgo-

ing null geodesic from (v ~ 0, r =0) to 8 lt evolves to the past.
of AB which we assume is the only solution to r =2m(v, r) )0
within the interior. If the event horizon originates from i (0
then 8 is at most locally naked. If it originates from v =0 then

8 can be globally naked.
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necessary to make use of computer algebra to manipulate
K. Whereas K simply reduces to the familiar 48m /r
for the Vaidya metric [2], generally K expands out to 49
distinct terms [7] for the metric (I ).]

In order to examine regularity at the origin for (v & 0,
r =0) it is convenient to define the function n(v, r) given

by

m (v, r) =n(v—,r)r'

and the function l(v, r) given by

c(v, r) =exp[I(v, r)r /2} .

(3)

(4)

If a & 1 then Bm/r)r fails to be defined at r =0 for any v

For 1 ~ a & 3 it follows that K diverges like

K 4n—(v 0)r ' [a —6a —17a —20a+12}

as r 0. For a=3, K evolves like

K =12[8n (v, 0) 4I(—v, Q)n(v, 0)+I (v, 0)}

(5)

(6)

along r =0 for v & 0, and for a & 3 we obtain (6) with

n(v, O) set to zero. The vector field u'=b;, is timelike for
r' ' & I/2n(v, r). Moreover, the acceleration, expansion,
and shear vanish along (v & 0, r =0) so that with a
decomposition of the energy-momentum tensor of the
form

Tp = (p+ p) u'up+ pbI+ q'up+ qpu'+ Qk'kp

+ 'H (I'kp+ k'Ip) +ZI'Ip, (7)

where I'=b, /2, q, =Pb',", and 7= p[QT/rlv+—8T/Brj
(T is the temperature and P is the thermal conductivity)
we have the following interpretations of n(v, 0) and
l(v, 0) for a =3:

2 [I(v, 0) —3n (v,0)}=8 ',
6n(v, O) =8n[p+4Q —2V},

(8)

where 2=4(Q —9) =2(iV —7). For a&3 we obtain
2(P —2Q) = —2P =p and 2l(v, O) =8np.

From the metric (I ) it follows that in addition to
~ =const radial null trajectories also satisfy

d' 2
1

2m
dr c r

(9)
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This equation will, in general, have "singular points" [8].
Whereas c can fail to be single valued (see below), it is an
ambiguity in the "potential" m/r itself which will give
rise to an isolated critical point (shell-focusing singulari-
ty) in more generic situations. With m(v &O, r =0) =0
and m(v & O, r =0) & 0 (which we will assume) the po-
tential jumps from 0 to infinity creating an isolated criti-
cal point for (9) at v =r =0. Note that this critical point
is in fact a null surface This can be vis. ualized with a
standard inversion map A:[(v,r)~v=r=0} [(u,r)(u
AO, r =0}, where u —= v/r and [(v,r)

~
~O,vr =0} [(u,

r)
~
u =r =0}.

Self si-milar collapse .—Self-similar spacetimes admit
homothetic Killing vectors (' where (in local coordi-
nates) &t,(pi=(Vpg )g p. Despite the paucity of self-
similar spacetimes which represent solutions to Einstein s
equations [9], they form the bulk of examples in the
literature on shell-focusing singularities [2]. From the
metric (I) it follows that without loss in generality we
can take ('=( vr, 0, 0). As a result, m/r =h(w)/w and
c=i(w), where w=r/v. Here we are interested in the re-
gion w ~ 0. Note that both c and m/r in general fail to
be single valued at A. The homothetic trajectories
(w =const) are spacelike, null, or timelike for h(w)
&, =, or & w/2 —w i(w)=j(w),—respectively. Given
h(w) and i(w), the character of the solution is easily
found. Intersection of h and w/2 gives the values of w

associated with the apparent horizon and intersection of h

with j gives the values of w associated with the homothet-
ic null geodesic trajectories w~. The w~ are given ex-
plicitly in terms of an affine parameter A. by r =exp(A, )
for x =0 and r =

~A,
~

'i" for x~0, where [101
P IP

wdi i 1
K (10)

i dw w 2

dh

dw

where the overdot denotes d/dt =B(A,)d/dk with

c8(B/c)/Bv =8[c(r 2m)]/Br and 1i. a—ffine. Note that for
the geodesics which reach A in the past (where we set
A. =0) B-(I —28m/Br)A. . As a result, the singularity at
A is at infinite redshift. The formal loss of predictability
is mollified by the fact that no information can come out.
Letting l be the associated 4-tangent we obtain

O=—lim k R,pl'IP=~™o '
(1 —28m/Br)' „' (12)

where R,~ is the Ricci tensor. The limit 0 is used to clas-

sify the strength of a singularity at A, +&0 being a
sufficient condition for a "strong" singularity [12]. Equa-
tion (12) is remarkable for its simplicity [13]. We now

It follows that given finite i(w) and h(w) any null geo-
desic from A which evolves through a region of spacelike
(timelike) w necessarily evolves to the future (past) of an

w~ from A. A is then a topological node [11]. Moreover
if there is no w~, A is not visible. If there is one w~ then
this is the only null geodesic from A without a turning
point. With two w~, nonhomothetic null geodesics ap-
proach the smaller w~ as r 0 and all evolve from A

without a turning point. Whereas it is possible to have

more than two w~, the character of A is clear. %'ith

x& 0, K diverges at A and the null geodesics which ter-
minate. there terminate in a "strong-curvature" singulari-

ty [10].
General collapse. —To begin we observe that the radial

null geodesics associated with (9) can be given in terms
of the autonomous system

i =2r, r' =c (r —2m),
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assume that c(v, r) and m(v, r) are expandable about 3 on v and r) 0 and set c(v,()) =I and m(0, 0) =(). It follows
that

+ [m4(2m 4
—c 1 )+c 1 (c~/2+ m 3) +2(m 3m4+c im s)u+ 3ms u I,16m1 48m z u 16m zc 1 (I +u) 2 4

r4 r4 r r 2

where I have used the notation

8m 8m 8m 18m 18m 8c =(m ),mz, m3, m4, ms, ci)
8r 8v 8v8r 2 8rz 2 8vz 8r

(14)

and retained u (v/r)~. Up to second order then all tra-

jectories which reach A reach a singularity (in particular,
a scalar polynomial singularity [12]). The singularity is

strong for m2&0.
Before we examine the system (11), note that every

null geodesic which evolves from A evolves to the past of
the local "apparent horizon" [r =2m(v, r)] at A[dv/dr~i~
~ (I —2m')/2mz]. The apparent horizon has no local

maximum in v for 8m/8v & 1/2. The geodesics can inter-

sect r 2m(v, r) subsequently and so pass through a
maximum r (for 8m/8v &0). A is then only locally
naked. Global nakedness can sometimes be achieved by a
suitable choice of boundary Z (the Cauchy horizon must

precede the event horizon within Z).
With x= rand y —=—v, the matrix of linear factors associ-

ated with the system (11) is [11]

1
—2mi —2m2

2 0 (IS)

The smaller one distinguishes the local Cauchy horizon.
With mz&0, 3 is an (unstable) node for 0 & mz ~ (I
—2m~) /16. A is at least locally naked unless mz & (1
—2m~) /16, in which case 3 is a focus. [If m2&0, A

becomes a saddle, but m2(0 is not consistent with

the evolution of m(v, r).] In the range 0 & m2 ( (I
—2m~) /16 A is singular [according to (13)] and strong
[according to (12)]. It is worth noting that energy condi-
tions are noE in general violated in the range
0~ mz~ (I —2m~ )/16 [15].

Here we will assume that m1 & I/2. Extension of (3) to
v=0 with a~ 3 would argue that "generic" collapse is
characterized by mz=0. If mz=O then A becomes a
nonhyperbolic critical point of the system (11) [14]. The
exceptional critical direction (local Cauchy horizon for

A) is given by dv/dr~~ =2/(1 —2m1). The remaining

geodesics leave A with a vertical tangent. A is a saddle
node, the union of one parabolic and two hyperbolic sec-
tors in the extended v-r plane. As long as mq) 0 it fol-

lows that the hyperbolic sectors do not contain a segment
of v and r & 0. As a result, A is at least locally naked for
ms&0. A is singular [according to (13)] though not

strong [according to (12)l. If mzAO, A is a hyperbolic
critical point of the system (11) [11]. There are at most

two critical directions, with slopes

[(I —2m 1) +' [(I —
2m |)—16mz] ' ]/4mz.

The foregoing analysis shows that if the mass evolves
as m(v &0,0) =0 [in particular, m given by (3) with
a~ 3], m(0, 0) =0, and m(v & 0,0) & 0 then as long as
mz&(I —2m~) /16 a regular origin evolves into a null

singularity at v =r =0, which is at least locally naked, be-
fore the onset of a massive singularity at (v & 0, r =0),
which is causally disconnected from the spacetime. The
singularity at v =r =0 may well be an essentially generic
feature of relativistic gravitational collapse [16]. Howev-

er, this type of singularity does not violate the spirit of
cosmic censorship. It is not that the metric remains
bounded (though not single valued) at v =r=0, rather it
is simply that m(0, 0) =0. Massless singularities should
not be considered gravitational (they do not attract parti-
cles), and it is gravitational singularities to which the
spirit of cosmic censorship refers. Indeed, as long as
m) 0 it follows directly from (9) that no spherically
symmetric spacetime can evolve a naked gravitational
singularity Neither g. eodesic incompleteness, the diver-
gence of K, nor the classification of strength distinguish
massless singularities from massive ones. Such a distinc-
tion should be considered an essential part of the formu-
lation of the cosmic censorship hypothesis. In conclusion,
we note that further substantive progress in the under-
standing of this hypothesis will only come from the study
of nonspherical gravitational collapse, an area of study
which has just begun [3,4].

This work was supported by a grant from the Natural
Sciences and Engineering Research Council of Canada.
It is a pleasure to thank Werner Israel for a number of
enlightening discussions.

[II R. Penrose, Nuovo Cimento 1, 252 (1969). The weak
form of this hypothesis has not been distinguished from
the strong form here since this distinction is not relevant
to the central point of this Letter. See also R. Penrose, in

Gravttationaf Radiation and Gravitational Collapse,
edited by C. De Witt-Morette, IAU Symposium No. 64
(Reidel, Dordrecht, 1974); W. Israel, Found. Phys. 14,
1049 (1984).

[2I The evidence in the spherically symmetric ease comes
from the development of "shell-focusing" singularities.
These singularities were, apparently, first noticed by D.
M. Eardley and L. Smarr, Phys. Rev. D l9, 2239 (1979).
For a detailed discussion of the dust case see D. Christo-

3131



VOLUME 68, NUMBER 21 PHYSICAL REVIEW LETTERS 25 MAY 1992

doulou, Commun. Math. Phys. 93, 171 (1984); R. P. A.
C. Newman, Classical Quantum Gravity 3, 527 (1986);
G. Grillo, Classical Quantum Gravity 8, 739 (1991). The
self-similar case has received considerable attention. See
A. Ori and T. Piran, Phys. Rev. Lett. 59, 2137 (1987);
Gen. Relativ. Gravit. 20, 7 (1988); Phys. Rev. D 42, 1068
(1990); K. Lake, Phys. Rev. Lett. 60, 42 (1988);60, 1068
(1988); B. Waugh and K. Lake, Phys. Rev. D 38, 1315
(1988); 40, 2137 (1989); Y. Gorini, G. Grillo, and M.
Pelizza, Phys. Lett. A 135, 154 (1989); R. N. Henriksen
and K. Patel, Gen. Relativ. Gravit. 23, 527 (1991); I. H.
Dwivedi and S. Dixit, Prog. Theor. Phys. 85, 433 (1991);
J. P. S. Lemos, Phys. Lett. A 158, 279 (1991). In a

parallel development, the transition from Minkowski

space to Schwarzschild space by way of an ingoing
Vaidya field [c=l,m=rv(r)] has been widely studied.
The self-similar case (meet ) has been examined by W.
A. Hiscock, L. C. Williams, and D. M. Eardley, Phys.
Rev. D 26, 751 (1982); A. Papapetrou, in A Random
0'alk in Relati t i' and Cosmology, edited by N.
Dadhich, J. K. Rao, J. V. Narlikar, and C. V. Vish-

veshwara (Wiley, New York, 1985); G. Hollier, Classical
Quantum Gravity 3, LI I I (1986); I. H. Dwivedi and P.
S. Joshi, Classical Quantum Gravity 6, 1599 (1989); 8,
1339 (1991). The charged self-similar null IIuid case
(which violates our restriction m ~ 0) has been examined

by K. Lake and T. Zannias, Phys. Rev. D 43, 1798
(1991). Other cases have been examined by Y. Kuroda,

Prog. Theor. Phys. 72, 63 (1984); K. Lake, Phys. Lett. A

116, 17 (1986); K. Rajagopal and K. Lake, Phys. Rev. D

35, 1531 (1987); K. Lake, Phys. Rev. D 43, 1416 (1991);
I. H. Dwivedi and P. S. Joshi, J. Math. Phys. 32, 2167
(1991); Phys. Rev. D 45, 2147 (1992). See also J.
Lemos, Phys. Rev. Lett. 68, 1447 (1992), for a discussion

of the Vaidya and dust cases.
[3] S. L. Shapiro and S. A. Teukolsky, Phys. Rev. Lett. 66,

994 (1991);Phys. Rev. D 45, 2006 (1992); see also R. M.
Wald and V. Iyer, Phys. Rev. D 44, 3719 (1991).

[4] C. Barrabes, W. Israel, and P. S. Letelier, Phys. Lett. A

160, 41 (1991).
[5] H. Bondi, Proc. R. Soc. London A 281, 39 (1964).
[6] T. Zannias, Phys. Rev. D 41, 3252 (1990); E. Poisson and

W. Israel, Phys. Rev. D 41, 1796 (1990).
[7] I have used t c MAcsvMA4rs. zs with the Dos Extender for

an Intel 486. By expand, in the text, I mean the MAcsY-
MA expand function. (The patch URICcl. MAc is flawed.
For a correction contact the author. )

[8] To avoid singular points, (2/c)(l —2mlr) must be sin-

gle valued, continuous, and satisfy the usual Lipshitz con-
ditions. See, for example, T. V. Davies and E. M. James,
Nonlr'near Drgerential Equations (Addison-Wesley, New
York, 1966).

[9] See T. Zannias, Phys. Rev. D 44, 2397 (1991); D. M.
Eardley, J. Isenberg, J. Marsden, and V. Moncrief, Com-
mun. Math. Phys. 106, 137 (1986).

[10] See K. Lake and T. Zannias, Phys. Rev. D 41, 3866
(1990), for precise geometric criteria associated with the
development of naked strong-curvature singularities in

self-similar spacetimes.
[I I] See, for example, L. Perko, Di/ferential Equations and

Dynamical Systems (Springer-Verlag, New York, 1991).
[12] On the strength of singularities, see F. J. Tipler, C. J. S.

Clarke, and G. F. R. Ellis, in General Relatiiily and
Gravitation, edited by A. Held (Plenum, New York,
1980); C. J. S. Clarke and A. Krolak, J. Geom. Phys. 2,
127 (1986).

[13]See Ref. [2] for discussions of a number of special cases.
[14] A particularly useful reference is A. A. Andronov, E. A.

Leontovich, I. I. Gordon, and A. G. Maier, Qualitatir e
Theory of Second Order Dyna-mical Systerrrs (Wiley,
New York, 1973). See, in particular, theorem 65.

[15] See, for example, R. M. Wald, General Relativity (Univ.
Chicago Press, Chicago, 1984).

[16] There is no evidence that m2) (I —2mr) /16 is generic,
though this inequality holds for homogeneous collapse. In

this Letter I have not included a discussion of nonradial
null geodesics. These do not alter the conclusions in a
substantive way.

3132




