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We show that a large class of Fokker-Planck equations, like the Schrodinger equation, can exhibit a
transition in their spectral statistics as a coupling parameter is varied. We assert that this transition is
connected to the transition to nonintegrability in a particular set of Hamilton’s equations. In the case of
the Schridinger equation, this transition is known to be a fingerprint of the underlying classical dynam-
ics. However, the Hamilton’s equations describing the transition in the Fokker-Planck spectrum have no
direct physical relation to the underlying dynamics of the Fokker-Planck equation, and consequently

have no such simple physical interpretation.

PACS numbers: 05.40.+j, 02.50.+s, 05.45.+b

The manifestations of chaos in a particular Fokker-
Planck equation with time-dependent coefficients has
been studied previously [1], where it was shown that the
Floquet spectrum for that system exhibited a transition in
its statistical properties. In this paper we show that not
only can a whole class of Fokker-Planck equations with
time-independent coefficients exhibit such transitions, but
also how this transition can be related to the dynamical
properties of certain Hamiltonian equations of motion.
Such a relation, in addition to providing a framework for
understanding and predicting such transitions, also pro-
vides a whole new set of concepts and techniques which
have not previously been applied to stochastic processes,
but which have proven quite useful in attempts to under-
stand the quantum mechanical manifestations of chaos.

In this paper we will be concerned with diffusion pro-
cesses on N” described by the set of coupled stochastic
differential equations

dq'(t) = —3'd(q)dt +Vg dWi(t), i=1,...,n, a)

where ®(q) is a potential bounded from below, the Wi(¢)
are uncorrelated Wiener processes, and g is a diffusion
coefficient [2]. [Note that Eq. (1) describes a purely
classical diffusion process, and leads to a purely classical
Fokker-Planck equation (2). Although not the only pos-
sible physical basis for this equation, one might think of
(1) as a mechanical system with potential proportional to
®, subject to very strong friction in a fluctuating environ-
ment.] In this case the evolution of the probability density
p(q,t) on R" is described by the Fokker-Planck equation
(3]

dp =-§-Ap+V' (pV) . )
Using the time separation ansatz p(q,t) =p(q)e ~*/2, we
can write Eq. (2) as an eigenvalue equation .Lp,(q)

=—2pr(q), where L=1%g?A+gVd+gVd-V. After
the change of basis p(q) =e ~®2¥(q) we obtain

H# ¥, (q) =, (q) , 3)
where 7 = —e®2Le "2 =— L 22A+d(q) is a Hermi-
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tian Schrodinger-type operator with the transformed po-
tential ®= 1 (V®)2— $ gV?®. The problem of solving
Eq. (2) has been reduced to the problem defined by Eq.
(3).

For small g [4] the WKB solutions of Eq. (3) are given
by

, 4)

() =X ca| VS| ~2exp [éSa(q,k)

where the S,(q,A) are the solutions of the Hamilton-
Jacobi equation 1 (VS,)2+®=A. The solutions of this
equation are given by the integrals S,(q,A) =f9p, dq
where the integration is along the classical trajectories of
Hamilton’s equations of motion [5]

OH . _oH

p=—¥, q= ap , (5)
with
H(p,q)=%p+d(q). (6)

The time-reversal symmetry of Egs. (5) with Hamilto-
nian (6) insures that the eigenfunction (4) are real since
the solutions of the Hamilton-Jacobi equation will come
in pairs £S,. The dynamics of (5) determine the solu-
tion of (3) through (4), and the solutions of (2) are given
by

D+t

p(q,t) =exp ¥,(q). @

Thus the properties of the Fokker-Planck equation (2)
are connected to the dynamics of the system with Hamil-
tonian (6) in a manner somewhat analogous to the rela-
tion of a quantum mechanical system to its classical
counterpart.

One question we might ask is how the behavior of (2)
is affected by the degree of chaos in the equations of
motion (6). Such effects, in the quantum mechanical
case [(5) affecting (3)], are often referred to as quantum
chaos, which is usually defined as the characteristics of
quantum systems whose classical analogs exhibit chaos.

3125



VOLUME 68, NUMBER 21

PHYSICAL REVIEW LETTERS

25 MAY 1992

The statistical properties of the eigenvalues of such sys-
tems are such characteristics, and the level spacing distri-
bution P(S), giving the probability of level separation S
(measured in units of the local mean spacing), provides
one such statistical property. Berry and Tabor [6] have
shown that nearly all quantum systems whose classical
analogs are integrable will have a Poisson level spacing
distribution P(S)=exp(—S), indicating the statistical
independence of neighboring energy levels. On the other
hand, it is now understood that the eigenvalues of systems
whose classical analogs are chaotic exhibit level repulsion.
That is, P(S)— 0 as S— 0 [7]. It is expected that sys-
tems with time-reversal symmetry whose classical analogs
are globally chaotic will have a Wigner level spacing dis-
tribution, P(S)=(xS/2)exp(—xS?/4), indicating a
linear level repulsion as S— 0 [8]. Since the eigenvalues
of the Fokker-Planck operator .£ with potential ® are the
negative of the eigenvalues of a Hamiltonian 7, with po-
tential <i>, the spectral statistics of the Fokker-Planck
equation (2) would then be expected to provide a signa-
ture of the dynamics of the equations of motion (5).
Stochastic chaos can then be defined, at least for the
case of diffusion in a time-independent potential, as the
properties of stochastic systems described by Eq. (2)
when the equations of motion (5) exhibit chaos. In par-
ticular, given a family of potentials &, where the dynam-
ics of (5) varies from globally integrable to globally
chaotic as ¢ is increased, we would expect the spectral

b, =324+ T D H(F+FeDyo—glizx2+ ¥y

+ef(24—4e)xy+(F —4e)xy>— (32— F e)xy?—(

V/

spacing distribution of the A’s to exhibit a corresponding
transition from Poisson to Wigner level spacing statistics.

An entirely separate problem is the question of the
direct physical relevance of the dynamics of (5) to the
underlying microscopic dynamics as described by (1).
One thing is clear: Chaos in (5) is emphatically not re-
lated to chaos in the dynamics generated by (1) with
g=0, that is, = —V®(q). When there is no noise the
individual trajectories just follow the gradient of the po-
tential along the route of steepest descent stopping at any
local minimum in ®, so what would normally be con-
sidered the underlying microscopic dynamics is trivial,
and never chaotic. In addition, it is easy to show directly
from (1) that the behavior of the expectation of § obeys
the same equation E {q} = —V®. Thus, there is no simple
physical relationship between the dynamics of (5) and the
dynamics of (1). However, a deeper analysis shows that
Egs. (5) are the imaginary-time equations of motion for
the most probable trajectories. A discussion of this result
will appear elsewhere.

As an illustration of these ideas, we studied a family of
two-dimensional Fokker-Planck equations with potentials

@ (x,y)=2x*+Ly*texy(x—yp)?. (8)

The form of the potential was chosen for convenience
only. The system needed to be at least two dimensional
in order to observe chaos in Eqs. (5). When =0 the
system is completely integrable, since it decouples into

J two one-dimensional systems. <i>€ takes the form

B L OxHtH(EF —24e)x 3 —2g(x2+p2—3xp)} .
)

-0.4 -0.

FIG. 1. Contour plots of the basins of (a) the physical potential ®. and (b) the noise-dependent transformed potential &, for
€=0.10 and g =0.2, which corresponds to case (d) in Fig. 2. The + and — signs mark the location of the local maxima and minima,

respectively.
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In Fig. 1 we compare contour plots of the physical poten-
tial @, to the noise-dependent transformed potential ®..
The numerical scheme we used was essentially identi-
cal to the one used in [9]. The eigenvalues of .L were cal-
culated by expanding # in a harmonic oscillator basis
and truncating the matrix at a suitably large size. The
presence of only even order polynomial terms preserves
parity, and enables us to calculate the eigenvalues for the
even and odd parity matrices separately, markedly reduc-
ing the computation time. The eigenvalues of the trun-
cated matrices were then obtained numerically. The un-
folded level spacings are calculated by normalizing to
local mean spacing unity via the formula S; =(&;+;—4;)

xp(A;), where p(1) is the smoothed level density. The
unfolded level spacings of each parity matrix must be cal-
culated separately. They can then be combined into one
large ensemble to calculate P(S). We were able to cal-
culate 450-500 accurate eigenvalues for each parity ma-
trix of rough dimension 2600.

The form of ®(x,y) was chosen so that the dynamics
and degree of chaos in Egs. (5) would be nearly the same
on differing A (energy) surfaces in the range of eigenval-
ues considered. We set g =0.2 in each case, and the reli-
able eigenvalues were in the range 0 <A < 50. This en-
compassed the first 900-1000 levels. Figure 2 illustrates
the transition (as ¢ is varied) in the level spacing statistics
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FIG. 2. Level spacing distributions P(S) and the corresponding Poincaré cross sections of the model system with g =0.2 for (a)
€=0.0, (b) ¢=0.005, (c) ¢=0.04, and (d) e=0.10. The cross sections are taken for (y =0, p, > 0), where A =25. The solid outlines
represent the outermost boundary of the A =25 energy surface as projected onto the (x,px) plane.
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of the Fokker-Planck operator as the dynamics of Eqgs.
(5) changes from completely integrable (¢ =0) to almost
globally chaotic (e=0.14).

The formal relationship between the Fokker-Planck
equation and the Schrodinger equation has been utilized
before [3], but never in this way. It has often been point-
ed out that there is a deep analogy between quantum
fluctuations and thermal fluctuations [10]. It now ap-
pears that there is also a deep analogy between quantum
dynamics and stochastic dynamics through their relation-
ship to the properties of certain conservative dynamical
systems. This connection, once made, opens up the study
of stochastic processes to a whole range of new tools and
concepts applicable to nonlinear systems. For instance,
what relationship does the Komogorov entropy or
Lyapunov exponent [11] of (5) bear to the properties of
the Fokker-Planck equation (2), and what does a non-
linear resonance in (5) correspond to in (2)? This is an
area for further, possibly fruitful study.

Both of the authors wish to thank the Welch Founda-
tion of Texas for partial support of this work through
Grant No. F-1051.
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FIG. 1. Contour plots of the basins of (a) the physical potential ®, and (b) the noise-dependent transformed potential ®, for
€=0.10 and g =0.2, which corresponds to case (d) in Fig. 2. The + and — signs mark the location of the local maxima and minima,
respectively.
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FIG. 2. Level spacing distributions P(S) and the corresponding Poincaré cross sections of the model system with g =0.2 for (a)
€=0.0, (b) ¢=0.005, (c) ¢=0.04, and (d) €=0.10. The cross sections are taken for (y =0, p, > 0), where A =25. The solid outlines
represent the outermost boundary of the A =25 energy surface as projected onto the (x,px) plane.
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