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Quantum techniques for key distribution— the classically impossible task of distributing secret infor-
mation over an insecure channel whose transmissions are subject to inspection by an eavesdropper, be-
tween parties who share no secret initially— have been proposed using (a) four nonorthogonally polar-
ized single-photon states or low-intensity light pulses, and (b) polarization-entangled or spacetime-
entangled two-photon states. Here we show that in principle any two nonorthogonal quantum states
suffice, and describe a practical interferometric realization using low-intensity coherent light pulses.

PACS numbers: 03.65.Bz, 42.50.Wm, 89.70.+c

Key distribution is the term applied to techniques al-
lowing two parties to acquire a random bit sequence (the
“key”) with a high level of confidence that no one else
knows it or has significant partial information about it.
One party (henceforth *“Alice”), for example, might gen-
erate the key by a physically random process, make a
copy of it, and hand deliver the copy to the other party
(henceforth “Bob”). Such shared secret key bits, al-
though random and meaningless in themselves, are a
valuable resource because they allow the communicating
parties to achieve, with provable security, two of the main
goals of cryptography: encrypting a subsequent meaning-
ful message to make it unintelligible to a third party [1],
and certifying to the legitimate receiver that a message
(plain or encrypted) has not been altered in transit [2].

If two parties share no secret information initially and
communicate solely through classical messages monitored
by an eavesdropper, it is impossible for them to arrive at
a certifiably secret key [3]. However, it becomes possible
to do so if they exchange both classical public messages
(which can be monitored but not altered or suppressed by
the eavesdropper) and quantum transmissions having the
property that they can be suppressed or altered, but can-
not in principle be monitored without disturbance [4].
Various types of quantum transmissions have been shown
to suffice: a random sequence of spin- & particles or sin-
gle photons in four non-orthogonal polarization states
(e.g.,—?%,&.and G); an analogous random sequence of
low-intensity polarized coherent or incoherent light pulses
[5]; a sequence of polarization-entangled Einstein-
Podolsky-Rosen [6] (EPR) two-photon states [7]; and an
analogous sequence of spacetime-entangled two-photon
states produced, for example, by parametric down-
conversion [8-11].

An earlier paper [12] has shown a general equivalence
between EPR-based [7,12] key distribution and non-EPR
schemes using on nonorthogonal states [4], arising from
the fact that measuring one member of an EPR pair is
equivalent to preparing the other member in a random
state corresponding to the result of the measurement.
Table 1 shows a typical key distribution scheme in both
its EPR and non-EPR versions. The end result in either
case is a sequence of random key bits, with evidence ei-
ther that it is shared and secret, or else that it has been

TABLE I. EPR and non-EPR key distribution.

EPR non-EPR

la O+ o0 + + + + + O O + O O O +
2a 2b G I @ =11 = =3 &l @ & & I
3 3 + OO0 + + 00 + 0 + 0 0 0 0 +
4 4 1 -l &6 = 2 | @ @ G -1
5 5 + o + + O O + O + O O o +
6 6 v VoV v v v v Vv
7 7 P - 1 Ly P G |l
) 8 1 0 1 0 1 1 0 1
9 9 1 0 0 1 1
10 10 0 1 0 1 1 0 1

'aIn the EPR version, Alice chooses a random basis for measur-
ing one member of each EPR pair of photons: rectilinear (+),
or circular (0). The other photon of each EPR pair is measured
by Bob in step 3.

ZAlice’s measurement results in effect determine, through the
EPR correlations, a random sequence of states for Bob’s photon:
horizontal (<), vertical (%), right-circular (), and left-
circular ().

2In the non-EPR version, Alice prepares a random sequence of
photons polarized <, 3, @, and G, and sends them to Bob.
3Bob measures his photon using a random sequence of bases.
“Results of Bob’s measurements. Some photons are shown as
not having been received owing to imperfect detector efficiency.
(Realistic detectors would also generate occasional errors due to
dark counts, which can be found and corrected as described in
[51.)

Bob tells Alice which basis he used for each photon he re-
ceived.

SAlice tells him which bases were correct.

"Alice and Bob keep only the data from these correctly mea-
sured photons, discarding all the rest.

¥This data is interpreted as a binary sequence according to the
coding scheme <> =¢ =0and t = » =1.

Bob and Alice test their key by publicly choosing a random
subset of bit positions and verifying that this subset has the
same parity in Bob’s and Alice’s versions of the key (here the
parity is odd). If their keys had differed in one or more bit posi-
tlions, this test would have discovered that fact with probability
7.

'"Remaining secret key after Alice and Bob have discarded one
bit from the chosen subset in step 9, to compensate for the in-
formation leaked by revealing its parity. Steps 9 and 10 are re-
peated k times, with k independent random subsets, to certify
with probability 1 —27* that Alice’s and Bob’s keys are the
identical, at the cost of reducing the key length by & bits.

3121



VOLUME 68, NUMBER 21 PHYSICAL REVIEW LETTERS 25 MAY 1992

BS Mirror
Source ------- \------ PSA- === m e \

------ Detector 0

-
1
]
1
1
1
]
|
1
|
1
1
]
1
]
1
]
1
1
1
1
1
1
1
1
|
]
1
1
1
]
1
]
]
Ll
1
]
|
ad
w
>+
1
1
1
1
— e T —

Detector 1

FIG. 1. Interferometric quantum key distribution using four nonorthogonal one-photon states. Alice’s source at left supplies single
photon states, which are split by a symmetric beam splitter BS into two arms of a Mach-Zehnder interferometer. Alice applies
(PSA) a random 0-, 90-, 180-, or 270-deg phase shift in one arm; Bob (PSB) a random 0- or 90-deg phase shift in the other arm.
After the quantum transmission, Alice and Bob agree publicly to keep only those instances in which their phase shifts differ by 0 or

180 deg, causing the photon to behave deterministically at the second beam splitter.

disturbed by eavesdropping, and should be discarded.

Although the most familiar example of the EPR effect
involves two-particle states with nonclassical spin correla-
tions, it has been known for some time [8,9,13] that other
two-particle states can be prepared, for example, by para-
metric down-conversion, which exhibit entirely analogous
correlations in phase that can be observed interferometri-
cally. Recently Franson [10] and Ekert, Rarity, and
Tapster [11] have pointed out that these correlations too
can be used for key distribution. Here we note the ex-
istence of one-particle versions of these two-particle
schemes. As in the spin-based key distribution of Table I,
the one-particle version involves random preparations by
one party and random measurements by the other, while
the two-particle scheme uses random measurements by
both parties. A one-particle interferometric key distribu-
tion scheme, involving preparation and measurement of
four states nonorthogonal with respect to phase, is shown
in Fig. 1.

In [12] the security of non-EPR key distribution
schemes is derived from the fact that any measurement
which fails to disturb each of two nonorthogonal states
also fails to yield any information distinguishing them.
This naturally suggests the possibility that key distribu-
tion might be performed using only fwo nonorthogonal
states, instead of the four used in Table I and Fig. 1.
Here we show that key distribution is possible in principle
using any two nonorthogonal states of a quantum system.

Let |uo) and |u,) be two distinct, nonorthogonal states,
and let Po=1—|u;Xu,| and P, =1—|uo)Xuo| be (non-
commuting) projection operators onto subspaces orthogo-
nal to |u;) and |ue), respectively (note reversed order of
indices). Thus Pg annihilates |u;), but yields a positive
result with probability 1 — [<uo|u}|2> 0 when applied to
|uo), and vice versa for P;.

To begin the key distribution, Alice prepares and sends
Bob a random binary sequence of quantum systems, using
states |uo) and |u,) to represent the bits 0 and 1, respec-
tively. Bob then decides, randomly and independently of
Alice for each system, whether to subject it to a measure-
ment of Py or P,. Next Bob publicly tells Alice in which
instances his measurement had a positive result (but not,
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of course, which measurement he made), and the two
parties agree to discard all the other instances.

If there has been no eavesdropping, the remaining in-
stances, a fraction approximately (1 —|(uolu;)|?)/2 of
the original trials, should be perfectly correlated, consist-
ing entirely of instances in which Alice sent |ue) and Bob
measured Py, or Alice sent |u;) and Bob measured P;.
However, before Alice and Bob can trust this data as key,
they must, as in other key distribution schemes, sacrifice
some of it to verify that their versions of the key are
indeed identical. This also certifies the absence of eaves-
dropping, which would necessarily have disturbed the
states |uo) or Iu,) in transit, causing them sometimes to
yield positive results when later subjected to measure-
ments P, or Py, respectively.

Figure 2 shows a practical interferometric realization,
in which the two nonorthogonal states |uo) and |u,) are
dim coherent light pulses differing in phase relative to an
accompanying bright reference pulse (bright coherent
states, typically nearly orthogonal, become significantly
nonorthogonal when attenuated to <1 expected photon
intensity, because all such dim states include a significant
component of the zero photon number state). Beginning
at the left side of the figure, Alice uses an arrangement of
unsymmetric beam splitters (UBS) and mirrors to split
an initial coherent pulse into two pulses separated in
time: a dim signal pulse of intensity u <1 expected pho-
tons followed by a bright reference pulse of M > 1 ex-
pected photons. The signal pulse is phase shifted (PSA)
0 or 180 deg to encode the bits 0 and 1, then launched
into a single mode optical fiber. The brighter reference
pulse is not phase shifted, but is delayed by a fixed time
At then launched into the same fiber. At the receiving
end of the apparatus, Bob uses a half-interferometer simi-
lar to Alice’s to split the incoming beam again, in the
same ratio as before, into a dim part and a bright part.
As before the dim part is phase shifted (PSB) by 0 or 180
deg, randomly and independently of Alice’s phase shifts,
while the bright part is delayed by Az. Finally the two
parts are caused to interfere as they enter a detector.

The wave entering the detector consists of three pulses
separated by times Ar. The first pulse, a very dim pulse
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FIG. 2. Interferometric quantum key distribution using two nonorthogonal low-intensity coherent states. Source at left supplies
coherent pulse (wave form -W-) of M > 1 expected photons intensity to Alice’s half-interferometer, where unsymmetric beam
splitters (UBS), mirrors, and phase shifter (PSA =0 or 180 deg) produce a dim signal pulse (-w- or, phase shifted, -m-), followed by
a bright reference pulse -W-. Sent to Bob through a single mode optical fiber, the pulses enter Bob’s half-interferometer, where, de-
pending on whether the sum of Alice’s and Bob’s phase shifts (PSA+PSB) is 0 or 180 deg, the signal pulse undergoes constructive
(wave form -2w-) or destructive (wave form ---) interference with the attenuated reference pulse before entering the detector. Arriv-
ing before this interference pulse is a very dim pulse (not shown) attenuated by both Alice and Bob but delayed by neither. Arriving
after the interference pulse is a bright twice-delayed reference pulse (wave form -W-) which Bob monitors to be sure the reference
pulses are not being suppressed. Also not shown are two unused beams leaving the rightmost beam splitter of each half-

interferometer in the downward direction.

which has been attenuated both by Bob and by Alice but
delayed by neither, is not considered further.

The second pulse, containing the important key infor-
mation, is a dim pulse consisting of the superposition of
the beam delayed by Alice and attenuated by Bob, and
the beam delayed by Bob and attenuated by Alice. If
Alice’s and Bob’s phase shifts are equal, constructive in-
terference will occur and the superposed pulse will gen-
erate a count with probability = 4uTgq expected photons,
where T is the transmission coefficient of the fiber and ¢
the quantum efficiency of the detector. If Alice’s and
Bob’s phase shifts differ, the superposed pulse will have
much lower intensity, ideally zero in the limit of perfect
interferometer alignment (the coherence time of the light
source is not an issue here, since the two interfering
pulses are exactly proportional, being attenuated versions
of the same source pulse).

Finally, at a delay At after the superposed pulse, a
bright pulse, which has been delayed by both Alice and
Bob but attenuated by neither, will arrive at Bob’s detec-
tor. Bob confirms its arrival, with approximately the ex-
pected intensity M7, which he can do reliably if
MTg > 1. This third pulse contains no phase informa-
tion, but serves to confirm that the reference pulse has ac-
tually arrived. It thus protects against an attack in which
an eavesdropper (“Eve”) would measure each signal-
reference pulse pair by an apparatus similar to Bob’s,
resend a correctly fabricated pulse pair whenever she was
successful, and suppress both the signal and reference
pulses when she was unsuccessful, thereby eavesdropping
on the channel without creating errors in Bob’s subse-
quent measurement results. Eve cannot suppress the
reference pulse without immediately being caught. But if
she suppresses only the signal pulse, the uncancelled

reference pulse will still produce a count in Bob’s detector
with probability, 4 Tq, and half these counts will result in
errors in Bob’s key.

The encoding of each bit in the phase difference be-
tween a dim signal pulse and an accompanying bright
reference pulse gives a practical way to implement opera-
tors analogous to Po and P, which yield a guaranteed
null result only on the two legitimate signals |u;) and
|ue), respectively, but not on fake signals (e.g., the vacu-
um state) that an eavesdropper might substitute. The
separation of the signal and reference pulses in time also
allows them to be transmitted through the same optical
fiber [14], thereby automatically compensating for envi-
ronmental phase drift in the fiber that would otherwise
make such a large interferometer unmanageable.

Since any pair of coherent or incoherent optical signals
become significantly nonorthogonal at low intensity, it
would seem that almost any source of two kinds of dim
light flash, for example, a very attenuated red versus
green traffic light, could be used for key distribution
without the complications of interferometry. Alice would
randomly send red and green flashes of <1 photon inten-
sity, and Bob would publicly report which flashes he saw,
but not their colors, which would constitute the secret
key. Because of the low intensity Bob can be confident
that a passive Eve standing beside him and watching the
same signal source would not see the same subset of
flashes, and so would be at least partially ignorant of the
key he agrees on with Alice (this partial ignorance can
later be amplified to near-total ignorance by hashing
techniques similar to that used in steps 9 and 10 of Table
1 [5,15D) [16l.

However, a more intrusive Eve, who stands between
Alice and Bob, can thoroughly subvert the scheme by in-
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tercepting all Alice’s flashes, and resending a flash to Bob
only when she succeeds in seeing Alice’s flash herself,
while simply stopping the others. To compensate for
their reduced number, Eve’s fabricated flashes must be
proportionately brighter, so that Bob’s probability of see-
ing will be the same as before (a cautious Eve would need
to fabricate flashes with non-Poissonian photon number
statistics, to simulate a Poisson distribution of lesser
mean). In terms of the projection operator formalism
discussed earlier, the red and green scheme fails because
the two signals Alice sends here are not pure states, but
statistical mixtures in which the phase of the electric field
is random. Therefore any operator Py which annihilates
all Alice’s red flashes will also annihilate the vacuum
state, since it may be viewed as a superposition of two red
flashes of opposite phase; the same holds for P, and green
flashes. Eve can thus safely substitute the vacuum state
for any flash she fails to detect. By contrast, in the inter-
ferometric scheme of Fig. 2, there is no fake signal an
eavesdropper can substitute to hide her failure to detect
the original signal, and the scheme remains secure.

These considerations may be generalized to conclude
that key distribution is possible not only using any two
nonorthogonal pure states |uo) and |u,), but also any two
nonorthogonal mixed states po and p, which span disjoint
subspaces of Hilbert space, therefore allowing Bob to find
two operators Po and P, such that Py annihilates p; and
P, annihilates pp but no state is annihilated by both
operators. The requirement of spanning disjoint sub-
spaces is not present in key distribution schemes using
more than two mixed states, allowing such schemes (e.g.,
the scheme [S] which uses four nonorthogonal incoherent
states) to be carried out with simple square-law detection
of the optical signals, rather than interferometric homo-
dyne detection as used in Fig. 2.

The author thanks Leonard Mandel, Joshua Rothen-
berg, and Gilles Brassard for helpful discussions. Part of
this work was done while the author was visiting Califor-
nia Institute of Technology as a Sherman Fairchild
Scholar.
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