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Soliton Generation for Initial-Boundary-Value Problems
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The solution of the initial-boundary-value problem of integrable nonlinear evolution equations, with

the spatial variable on a half-infinite line, can be reduced to the solution of a linear integral equation.
The asymptotic analysis of this equation for large t shows how the boundary conditions can generate sol-
itons.

PACS numbers: 03.40.Kf

Most physical problems are naturally formulated as
boundary-value problems. Such a physical problem
arises, for example, in a certain laboratory study of water
waves [I]; this situation can be modeled by the Korte-
weg-de Vries (KdV) equation on a semi-infinite line,
with q(x, 0) 0 and q(O, t) given. This problem is well

posed [2]; furthermore, numerical studies [3,4] indicate
soliton generation, which is in agreement with the experi-
mental observations. But an analytical confirmation of
these numerical results remains open.

The soliton theory for solving the initial-value problem
of integrable equations has been well developed; it

reduces the solution of a given nonlinear equation to the
formulation of a Riemann-Hilbert problem, which can be
solved via a linear integral equation. The question of ex-
tending this theory for solving initial-boundary-value
problems on a half-infinite line remained open for a rath-
er long time (see, for example, [5]; the case of particular
homogeneous boundary conditions was studied in [6-9]).
One of the authors [10] recently presented a method for
linearizing such problems. This method reduces the solu-

tion of the given nonlinear equation to the solution of two
inverse problems, one associated with the x part of the
underlying Lax pair, and the other with the t part of the
Lax pair. Each of these problems can be formulated as a
Riemann-Hilbert (RH) problem, and each of them can
be solved through a linear integral equation. Before one
can solve the x part, one must first obtain the so-called
scattering data by solving the t part. Thus, while the
solution of an initial-value problem reduces to the solu-
tion of one RH problem, the solution of an initial-

boundary-value problem was reduced to the solution of
two RH problems. This creates certain technical dif-
ficulties, in particular, for extracting information about
the physically important question of the large-t behavior
of the solution.

Here we first review the formulation of the above two
RH problems. Then we show that it is possible to reduce
them to a new single RH problem. It is remarkable that
the solution of initial-boundary-value problems can also
be obtained by solving only one RH problem (just like
the case of initial-value problems).

This method is illustrated for the nonlinear Schroding-
er (NLS) equation; it is also indicated how it can be ap-
plied to the KdV equation and to the N-wave interaction
equations. It was shown in [11] that initial-boundary-
value problems on the semi-infinite line are similar to cer-
tain forced problems, where the forcing is of a distribu-
tion type. ~e therefore expect that this method can also
be used for the linearization of such forced problems.

Our scheme is a generalization of the method used for
solving problems on the infinite line. We expect that a
similar generalization of the method used for the periodic
problem will linearize the problem on the finite domain.

Let us summarize the main steps of the method as ap-
plied to the NLS equation

iq, +q„—2X(q( q=0, x, t E [0,~); k= ~1, (1)

where q(x, O) and q(O, t) are given, they decay for large
x and t, and they satisfy the necessary compatibility con-
dition to ensure the existence of solution at x =0, t =0.
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The cases k =1 and A, = —
1 will be referred to as the de-

focusing and focusing cases, respectively. The N LS
equation is the compatibility condition [12] of the Lax
pair [13]

w„+ikJw =Qw, w, +Uw =0,

U=:2ik J+iA. ~q~ J—2kQ+iQ„J,

(2a)

(2b)

where J=diag(1, —I) and Q is an off-diagonal matrix
with 12 and 21 entries given by q and kq, respectively
(throughout this paper the overbar denotes complex con-

jugate).
The first step of the method involves solving a direct

1

and an inverse problem associated with the x part of the

Lax pair, i.e., Eq. (2a). Let the 2X2 matrices w(x, t, k)
and y(x, t, k) be the solutions of Eq. (2a) specified by the
boundary conditions p(o, t,k) I and lim„exp(ikxJ)
x y(x, t, k) =1, respectively. Writing Volterra integral
equations for these eigenfunctions, and letting @=p
&exp(ikxJ), +=yexp(ikxJ), it follows that @ and %'

have analytic extensions in the complex k plane given by
@=(@+,@ ) and +=(%',%'+). This notation means

that the first column of the matrix N is analytic for

kt ~ 0 (where k kR+ikt); similarly the second column

of 4 is analytic for kI ~ 0. These matrices are related by
the scattering equation qi =4 exp( i kx

—J) [iit(o, t, k )]
where Jf denotes the commutator of J with f and hence

(expJ)f= (expJ)fexp( —J). Rewriting this equation we

obtain the RH problem

+ +
(@

—
( k) @

—
( k)) @ (x, t, k) e (x, t, k)

G( k), k IR,
y2+ O, t, k @2+ O, t, k

(3)

where the jump matrix G has entries G ~ ~ =G22 =1,
G(2= —y(+(Ot, k)exp( —2ikx), and G2) =y2 (O, t, k)
xexp(2ikx). We shall denote this RH problem by

g -g+G and we shall refer to it as the x-RH problem.
We note that there exist the symmetry relations

qi+(k) @ (k), @+(k)=Aqi (k),

e~ (k) -e2+(k), e2 (k) =Re ~+(k).

Because of the relation

I

O =(+,O+ ), where when + occurs with a caret it
denotes analyticity in the first and third quadrants of the

complex k plane (similarly when —occurs with a caret it

denotes analyticity in the second and fourth quadrants).
The matrices qi and 4' are related by the scattering equa-
tion 4=4'exp( —2ik tJ) [4'(O, k)] '. Rewriting this

equation we obtain the RH problem
A + A +

(~ (t k) e (t k)) = G(t k)
~;(O,k) ~;(O,k)

y2 (O, t,k) =pi+( Ot, k), k'e IR, (s)

the Riemann-Hilbert problem (3) is always solvable (i.e.,
there exists a vanishing lemma [14]). To solve this RH
problem one needs y~+( Ot, k) for k E IR, the zeros of

y2+ (O, t, k) for kt & 0, and the k derivative of yq+ at these

zeros. Having these data, which are usually called the

scattering data, Eq. (3) can be solved via a linear integral

equation.
The second step of the method involves finding

y( tO, k). The eigenfunction y( xt, k) satisfies y, +Up
=ittc(t). Evaluating this equation as x ~, it follows

that c(t) =2ik J. Hence i(ittO, k) solves

y, (o,t, k)+2ik [J,i'(o, t,k)] =Q( tO, k)y( tO, k), (4)

where

Q(o, t, k) =2kQ(o, t) —iA)q~ (O, t)J —
. iQ„(o,t)J.

The main idea of the method of [10] is to solve Eq. (4) by

formulating for this equation an inverse scattering prob-

lem. Let qi(t, k) and 4'(t, k) satisfy the same differential

equation as ( 11ttO, k) [i.e., Eq. (4)], and let them be

specified by the boundary conditions qi(o, k) =I and

lim, 4'(t, k) =I, respectively. (We use the caret nota-

tion to help the reader appreciate the analogy between

&,+ and qi, 4'.) Writing Volterra integral equations for

these eigenfunctions, it follows that 4=(k+,qi ) and

Iy+(0 t k) = „+ e+(t k), k 6 I,+ y2+(O, o,k) .+

~;(O,k)
(6a)

(O, t, k)= ' ' e (t,k), km IV,yi (O,o, k)
4'~ (O, k)

y+(O, t, k) = y2+(O, o,k)@ (t, k)+y(+(O, o, k)qi (t,k)

(6b)

xexp( 4ik t), k E II, — (7a)

y (O, t, k) = y( (O,o, k)@ (t,k)+y2 (O,o, k)e (t,k)

xexp(4ik t), k E III. (7b)

We note that Eqs. (6b) and (7b) are consistent with the

fl

where the jump matrix G has entries G ~ ~ G ~2 1,
G)i= —+)+(O,k)exp( —4ik't), and G2) +2 (O, k)
xexp(4ik t). We shall denote this RH problem by j

g+G and we shall refer to it as the t-RH problem. Be-
cause of the symmetry

+2 (t, k) -H i+(t, k),
this RH problem is also always solvable.

The matrices iit(o, t,k), +(t,k), and Ci(t, k) satisfy the

same ordinary differential equation (4); thus in the

domains of their definitions they are simply related:

3118



VOLUME 68, NUMBER 21 PHYSICAL REVIEW LETTERS 25 MAY 1992

underlying symmetry conditions. Using the relations (6)
and (7) it is possible to rewrite the t-RH problem in a
more convenient form. To achieve this we first introduce
some notation. Let

s~ (k) y~ (0,0,k), sq (k) =iIr2 (0,0,k),

s i+ (k) vari+(0, 0,k), s2+ (k) =itt2+(0, 0,k) .
(s)

(t,k) Y (t,k)F(t, k), k E IR,

Y I ask

where Y is given by

(10)

We note that the s's can be evaluated in terms of the ini-
tial data q(x, O). It turns out that the t-RH problem in-

volves the following quantities:

+r $1c(k) + 2 + + b(k)
Sp

(9)
~, (O, k)
~, (O, k)

Using the definitions (8) and (9) the t-RH problem can
be written as

In the focusing case (A, = —1), Y may have poles and

one needs some additional information about the posi-

tion of these poles: Let kj & II, 1 ~j~ N, satisfy

+~ (O, k&) =0; then Y has poles at kj and at kt. We
define Yby

N

Y= Ydlag /N(k —kJ), U (k —k )
j~) j I

Then Y has the following properties: (a) does not have

poles; (b) satisfies a RH problem with the same jump
conditions as that of Y where r is replaced by r =rQ(k

kj)~—(k —kj); (c) Y-k I+O(k ') as k ~; and

(d) Y satisfies

Y(x,t,kj)(l, cje—xp[4itkj +2ixk~]) =0,
(i2)

i2 (O, k, ) Qp-(;„J(k, —k;)
4' i, (O,k, ) gN- (k, —k;)

To solve the RH problem for Y, one first solves a canoni-
cal RH problem for X, which satisfies only conditions (a)
and (b) above, as well as X I as k ~. Having ob-
tained X, it is straightforward to find Y.

We now discuss the long-time behavior of the above
formalism. For simplicity we assume q(x, O) 0. It is

possible to show that as t

4+(t,k) +(0, k)+(k) ' '(Ot k)
(k)

X(x,t, k) =[I+0(1/Kt)]diag(a(k), a '(k)),

( k) i+(t,k) (0 k) 4 (t,k)

for k in I, . . . , IV, respectively, where p(k) 4'i (0,
k)s2+(k) —4'2 (O, k)sl+ (k), v(k) p(k). The jump ma-
trix F has the following form: For k E iR, F 1 1

F22 1, F(2 0, F2i c(k)exp(4ik t); for k 6im
FI t F2p 1, F2~ 0, FI2 —Xc(k)exp( 4ik t); f—or
k & R+, F(( 1, F22 1/1$2 I F(2= —b(k)exp( —4i
xk t), F2i gb(k)exp(4ik t); for k E IR, F22=1,
F~~ 1+Fi2F2~, F~2 [b(k) gc(k)—iexp( 4ik t), F—

2~

-[c(k)—kb(k)]exp(4ik't).
The RH problem (10) is uniquely defined in terms of

the initial data q(x, O) (which specify the s's) and of
r(k), which is in principle specified in terms of the
boundary data q(O, t). r(k) is analytic for k C IIVIV;
also because r sq /s~ for k C IV, r(k) has analytic
continuation for k 6 III.

The final step of the method involves formulating a
new RH problem, whose solution gives the solution of
both the x and t-RH prob-lems: Let Y(x,t,k) satisfy the
same jump conditions as Y(t,k) [Eq. (10)], where
exp(+ 4ik t) is replaced by exp(~4ik t+'2ikx). Then

9'+(x, t,k) Y(x,t,k)(0, 1), k E I,

q(x, t) 2i lim [kY(x, t, k)]i2, k G I.
k

a(k) -exp
~0 in[i+ Ir(k') I']

where ko= x/4t U—sing t. his estimate it follows that in

the defocusing case q(x, t) disperses away like I/Jt, as
t . In the focusing case, the main contribution
comes from the discrete spectrum. In particular if N =1,
then

2rtexp[ 2i&x 4—i(&' —rt')t —iv—]
ch (rtx+ 4(rtt —6)

+O(1/it ),
where

p= ——+argr+-g 1 '"o ln[l+Ir(k)I ] (k -g)dk,
2 x"-" (k —g)'+g'

r =resq, r(k)

& = —I»a+lnI r I
—+ in[1+ r(k) ']

dk,
(k —g)'+ rt

k( =g+irt.
We note that since rt) 0 and ( (0, the solitons move
away from the boundary. Also, in contrast to the solution
to the Cauchy problem for x E ( —~,~), here r is not
arbitrary but depends on r(k).

We conclude with some remarks.
(I) It is straightforward to make the above exact
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analysis rigorous: The direct problem satisfies Volterra
integral equations; thus for q(x, O) and q(O, t) in

I. '(lR+), these equations are always solvable. Also, both
the x and t inverse problems are formulated via RH prob-
lems which satisfy a certain Schwarz reflection symme-

try; therefore if the jump functions are in H'(lit) these
RH problems are always solvabie [14]. To make the
above asymptotic analysis rigorous [15] one should use
the recent work of [16].

(2) There exist conceptual similarities between the
problem studied here and the generation of dromions for
the Davey-Stewartson I equation [17]: In both problems,
it is the spectrum of the t part of the Lax pair that deter-
mines the emergence of coherent structures.

(3) It follows from the above discussion that the funda-
mental RH problem associated with the solution of an
initial-boundary-value problem is defined on a contour
specified by the t part of the Lax pair. In the case of the
NLS this part contains K; thus this RH problem is

defined on k E IR. In the case of the N-wave interactions
the evolution of the scattering data T satisfy T, =ikCT
—TCJ 'Q(O, t), Q(x, t) is an NxN oF-diagonal matrix,
and J,C are N xN diagonal matrices with real, distinct
entries. Thus, for the N-wave interactions the fundamen-
tal RH problem is defined on k 6 IR. In the case of the
Korteweg-de Vries equation the scattering data satisfy
T, 4ik JT=—Q(k, t)T, where T(t, k) is a 2x2 matrix,
J=diag(l, —1), and Q(k, t) is a rational function of k

which depends on q(0, t), q, (0,t), and q,„(0,t); thus the
RH problem is now defined on k E R.
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