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Extinction, Survival, and Dynamical Phase Transition of Branching Annihilating Random Walk
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We analyze statistical properties of random ~alkers which disappear when they meet and make

offsprings by a controllable rate. Numerical results for one, two, and three dimensions and for the Sier-

pinski gasket are assessed in view of the mean-field theory predictions. Universality classes are found to

depend on the number of offsprings in space dimension less than 3.

PACS numbers: 64.60.Ak, 05.40.+j, 05.70.f h

In recent years diAusion-limited annihilation of the

type A+A 0 has received a lot of attention (see [1,2]
and references in them). With one of the most important
real-life examples of identical particle annihilation being
the free radical recombination in chemical chain reac-
tions, it would be natural to add to this process a branch-
ing step 3 (n+1)A in order to accommodate a vast

category of branching chain reactions, covering many im-

portant oxidation processes [3]. Defining this process on

a lattice leads us in the diAusion-controlled limit to a
branching annihilating random walk, a process first intro-
duced by Bramson and Gray [4].

The branching annihilating random walk (BAW) of
particles occupying sites of a lattice is a process compris-

ing two steps, taking place with probabilities p and 1
—p,

respectively. (I) A particle is chosen at random and

moves to a randomly chosen nearest-neighboring site. If
this site is already occupied, the two particles annihilate
leaving an empty site. (2) A particle, chosen at random,
produces a fixed number of oA'springs which are placed
on neighboring sites. If a newborn oA'spring tries to occu-

py an already occupied site, it annihilates with the occu-

pying particle leaving an empty site.
In the course of BA%', particles can eventually disap-

pear (extinction) or a nonzero concentration of particles
can exist indefinitely (survival). One can easily show that
in even-oA'spring BAW, parity of the total number of par-
ticles is preserved. Further we assume that the initial

number of particles is even, so that extinction is possible
in principle.

It was shown rigorously by Bramson and Gray [4] that
one-offspring BAW in one dimension survives at suf-

ficiently small p, while if the value of p is big enough the
particles are eventually eliminated. Sudbury [5] proved
the extinction of two-oA'spring BAW in one dimension at
any p) 0.

The outline of the current article is as follows: First we

present the mean-field results, derived for an arbitrary
number of offsprings and any dimensionality; then we

present the results of numerical simulations in one, two,
and three dimensions and on the Sierpinski gasket; and

finally we present an exact treatment of the particle ex-
tinction dynamics of two offsprings in one dimension.

In order to construct a mean-field theory for BAW on

a lattice with coordination number z let us choose a site
and consider its neighbors as mean-field sites. Now only
events leading to a change in the state of the chosen site
will be considered. When the chosen site is empty, which

happens with probability 1
—c, where c is the concentra-

tion of particles, two events must be taken into account:
(1) A particle jumps from a mean-field site to the chosen
site, and (2) a mean-field-site particle puts an offspring
on the chosen site. When the chosen site is occupied we

must also consider jumping of a particle from the chosen
site. By assuming that the particle concentration of the
mean-field sites is equal to that of the chosen site, we ob-

tainn

d 1— c(t) = [(I —c) [cp+nc(1 —p)j —c[cp+nc(l —p)+pj] = c[(1—p)n —2c(n+p —np)j,1

dt z+1 z+1
where n denotes the number of oA'springs. The fixed

points of (I) are

n (1 —p) (2)
2(n+p —np)

'

It can be shown that the first solution is unstable. The
stable solution is monotonically decreasing with p, giving

c =
2 at p =0 and c =0 at p = 1. Namely, we have sur-

vival at any p except the case of no branching (p=l).
Using terminology of phase-transition theory we may
summarize the mean-field results as follows: A dynami-

cal phase transition from survival to extinction occurs at
the value of control parameter p=1 with the critical ex-

ponent for concentration P = l.
Numerical simulations were performed on a 10000-site

lattice in one dimension, on a 100x100 square lattice in

two dimensions, and on a 20x20x20 simple cubic lattice
in three dimensions (with periodic boundary conditions).
In order to introduce multiple branching we had to make

a convention on how to place the oAsprings around the

origin. We placed the oAsprings in the most compact
manner possible; that is, keeping the center of mass of the

sites, receiving the offsprings, as close to the original par-
ticle as possible. In the cases where there were several

equivalent most compact configurations, we used all these
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TABLE I. Check of size dependence: calculated critical
probabilities (p ) and critical exponents (P) at different lattice
sizes (two-dimension one-offspring case).

Size

0.5

0.4.

0.3.. v 1

25x 25
50x 50
80x 80

100x 100

0.96
0.85
0.85
0.85

1.5
1.0
1.0
1.0

0.2"

0. 1..

~ 3
I

Z

4

configurations with equal probability.
We approximated the Sierpinski gasket by a 29 526-

site lattice, obtained by making nine iterations of the usu-

al transformation, leading to the true Sierpinski gasket in

the limit of infinite number of iterations. For the Sierpin-
ski gasket we put the required number of offsprings com-
pletely at random on the sites, neighboring the original
site. In the case of the Sierpinski gasket we used
reflective boundary conditions; that is, each site had four
nearest neighbors, except for the three sites in the
corners, which had two nearest neighbors each.

We judged a BAW to survive if the number of steps
per lattice site, starting from a lattice completely covered
with particles, exceeded 10000 without reaching the ex-
tinction state with zero concentration of particles. Dou-
bling this arbitrary number did not affect the steady-state
concentrations of particles, except for the two-offspring
BAW in one dimension, when what seemed to be a small
survival region was rapidly shrinking with the increase of
the maximal number of steps, which led us to the con-
clusion that there is no survival at any p & 0.

We calculated the steady-state particle concentration
dependence on the value of p for a mesh of p values taken
with a step 0.01, starting from p =1. When the transition
between survival and extinction was detected (that is,
when a point with nonzero concentration of particles after
10000 steps per site of the lattice is reached), we fitted
the data in the vicinity of the threshold as e-(p —p*)~

(usually taking seven points with a nonzero stationary
concentration of particles) and considered the values of
p* and p which gave the best fit as the best approxima-
tion for the true values of the threshold jump probability
and critical exponent.

To make sure that the same power-law dependence was
holding up to the transition point we tried to use a 0.001
mesh to estimate p and P values. We were able to ob-
tain values consistent with the results for the 0.01 mesh in

all cases except four offsprings in one dimension and one
offspring in two dimensions, where the data for the 0.001
mesh were too scattered at the system size we used to
make any assessment of p* and P.

In order to check the size dependence we changed the
size of the lattice by a factor of 2 or 3. In all cases no
significant or systematic change in the values of station-
ary concentrations has been detected. For the case of one
offspring in two dimensions we have estimated p* and p
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FIG. I. One dimension: Steady-state concentrations of par-
ticles near the threshold. Numbers indicate the number of
offsprings.
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FIG. 2. Sierpinski gasket: Steady-state concentrations of
particles near the threshold.

on the basis of data obtained for different lattice sizes.
The results, indicated in Table I, clearly show that our
approach to the estimation of p and p gives consistent
results for a wide range of lattice sizes.

The results of our simulations are presented in Figs. 1

through 4 and in Table II. The mean-field prediction of
survival at any p (1 proved to be valid for any number
of offsprings in the three-dimensional case. For two di-
mensions a nontrivial threshold value was obtained for
the one-offspring BAW. In one dimension we found
p*& I at all numbers of offsprings considered.

For the one-offspring BAW in one dimension our re-
sults confirm the prediction of the existence of a nontrivi-

al critical point made by Bramson and Gray [4] and for
the two-offspring BAW, the prediction by Sudbury (5l of
extinction at any p) 0. In one dimension, p* =0 in the
two-offspring case and p* is nontrivial in other cases.
The cases of odd numbers of offsprings seem to belong to
the same universality class while the case of four
offsprings gives a different critical exponent.

In two dimensions a set of BAWs with the number of
offsprings greater than 1 seems to form a universality
class with p&I, while the value of p* is less than 1 in the
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F16. 3. Two dimensions: Steady-state concentrations of par-
ticles near the threshold.

ease of one off spring.
All three-dimensional BAWs have the mean-field

values of p* =1 and P= 1. This result seems to indicate
that the critical dimension is two. However, the actual
values of stationary concentrations near the threshold do
not follow Eq. (2); namely, the critical coefficients are
diA'erent (see Fig. 4). Therefore, we know that the spa-
tial restriction cannot be neglected even in three dimen-
sions.

Our simulations of the Sierpinski gasket reveal a strik-
ing diA'erence between the odd and even numbers of
off'spring cases, which seem to form two separate univer-

sality classes. On the Sierpinski gasket two- and four-
oA'spring BAWs follow the mean-field theory prediction
of p =1.

ln order to check the mean-field theory prediction of
c =0.5 at p=0, we performed simulations for all dimen-
sionalities and offsprings numbers listed in Table II. In
all cases this prediction has been confirmed by simula-
tions (although it is possible to show exactly that in some
special situations with the number of oA'springs close to
the size of the system this mean-field theory prediction is

FIG. 4. Three dimensions: Steady-state concentrations of'

particles near the threshold. Mean-field theory predictions are
shown by solid lines.

not valid [6]).
The most interesting point may be the dependence on

parity. In the case of even offspring the parity of the par-
ticle number is conserved, and this conservation law may
give rise to the even-odd differences in one dimension and
on the Sierpinski gasket. In the case of odd off'spring

there is a possibility that a particle produces an odd num-

ber of particles and they all annihilate by random walks.
Therefore, the odd offspring cases may be more likely to
die than the even oA'spring cases. This intuitive estima-
tion is valid for the Sierpinski gasket and for two dimen-

sions with one offspring. The reason that the value of p*
for five oA'spring is less than that for four oAspring in one
dimension may also be explained by this effect.

An exception of this intuition is the case of two
oA'spring in one dimension where we have only the extinc-
tion state for all nonzero p. This special case can be ana-
lyzed rigorously as follows [7). Let mj(t) =1 when there
is a particle at time step t on the jth site, and m~. (t) =0
otherwise. Then m~(t+1) is given probabilistically as

m~ (t), probability 1
—2/N,

0, probability p/N,
mj(t+1) mj(t)+mj ~(t) mod2, probability (1 p)/N+p/2N, —

m, (t)+mj+~(t) mod2, probability (1 —p)/N+p/2N,

(3)

TABLE II. Critical probabilities (p*) and critical exponents (P).

Number of
oA spring

1D Sierpinski gasket

P P

2D 3D

0.108 + 0.001
0

0.461 ~ 0.002
0.72+ 0.01

0.718+ 0.001

0.32+ 0.01

0.33+ 0.01
0.7 + 0. 1

0.33+ 0.01

0.45 + 0.01
1.00+ 0.01
0.79 ~ 0.01
1.00+ 0.01

0.5+ 0. 1

3.0 ~ 0.3
0.5 + O. l

3.0 ~ 0.3

0.85 w 0.01
1.00+ 0.01
1.00+ 0.01
1.00+ 0.01

1.0+ 0. 1

1.25 ~ 0.02
1.26+ 0.02
1.25 ~ 0.02

1.00+ 0.01
1.00+ 0.01

1.0 + 0. 1

1.0+ 0. 1
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where N denotes the system size and the pair-annihilation
effect is represented by taking mod2. Let us consider the
probability Q„ that the number of particles on r consecu-
tive sites is odd. First let us note that Q~ is equal to the
concentration of particles c and that Q~ =0 (JV is the to-
tal number of sites) because the total number of particles
is always even. From Eq. (3) we have the following
equation for Q~..

Ql(t+ I ) Q((t)+ —[—2Q)(t)+(2 —p)Q2(t)] .
1

N
(4)

This set of equations makes a discretized diffusion
equation in (r t) space-and it can be shown that the only
steady-state solution for p~0 is Q~ =Q2= =0, which
means extinction. [n the case of no random walk (p=0)
a survival solution (Q~ Q2 e0) is possible.

As Eq. (5) is an ordinary diffusion equation we can es-
timate that e(t) decays followmg I/Jt for large t in the
limit of N . This estimation is not rigorous because
Eq. (4) for r I is a little modified from the ordinary
diffusion equation, but it is confirmed numerically that
such decay really takes place for large enough t (typically

By considering the stochastic time evolution of the sum of
r consecutive sites as we did for m~(t), we can get equa-
tions for Q, for r =2, 3, . . . , as

Q, (t+ I) =Q, (t)+ P [Q,-i(t) —2Q, (t)+Q,+i(t)].
N

(5)

t »1000) whenever pWO.
In summary, by varying the number of offsprings and

dimensionality of the underlying lattice we have found a
variety of steady-state behaviors in the system of branch-
ing annihilating random walkers. For one dimension with

more than three offsprings and for the Sierpinski gasket,
we have no rigorous theory yet, but parity conservation
seems to be playing a central role in the universality
classes.
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