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Cyclotron Emission from Nonuniformly Magnetized Plasmas
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A new quantitative representation of the generalized Kirchhoff's law relating the emission from each
propagating branch to the absorption along the corresponding branch is established, including for the
first time the effects of inhomogeneous magnetic fields on cyclotron and synchrotron radiation from
mode conversion theory. The concept of optical depth is revised to include effects of reAection and con-
version in addition to transmission. Via the use of a variational principle, the source distribution func-
tion for the inhomogeneous emitting layer is calculated.

PACS numbers: 52.25.S~, 03.40.Kf, 52.35.Hr

Cyclotron emission from both relativistic and nonrela-
tivistic plasmas, correct estimates of which are critically
important for power balance in fusion plasmas and for
plasma diagnostics, has been discussed by many authors
[1-6]. Nearly all have considered either a uniform plas-
ma layer of finite extent with ad hoc assumptions about
the eA'ective thickness of the layer or a plasma with slow-

ly varying plasma parameters. Prior to the analysis of
the eA'ects of mode conversion on such emission problems
[6], however, the effects of the varying magnetic field
have never been included consistently. It is the purpose
of this paper to demonstrate the significant discrepancies
between the generalized KirchhoA"s law (GKL) and con-
ventional theory and to present for the first time the lo-

calized source distribution function.
Since the thickness of the cyclotron emission layer is

nearly always determined by the variation of the magnet-
ic field, the GKL supersedes virtually all previous cyclo-
tron and synchrotron emission results. In the limit of
completely absorbing layers, where blackbody conditions

apply, the results coincide, but even in cases where the
transmission coefficient is virtually zero, there may be
substantial diAerences from classical results. In addition,
radiation from a volume of plasma remote from the sam-
pled volume may add to the directly emitted radiation
through the mode conversion process.

The basic mode conversion tunneling equation with ab-
sorption may be written as [7]

y'"+X2zy" + (k'z+ y) y =h(z)(y" + y),
where —~ &" & ~, X-&0. For the ion cyclotron har-
monic, y & —I, h(z) = —,

' ) KZ'(I,')/Z((). y & —
I for

both the I mode at cu=2co, ., and the 0 mode at a=co, ,
and h(z) ~ g+ —', —I/F7g~(g) for the weakly relativistic
cases where ( and z are proportional to the distance from
the resonance point and Z(g) and Fq(() are the nonrela-
tivistic and relativistic plasma dispersion functions. The
dimensionless parameters k, y, and x are functions of the
plasma parameters n,„BO, Ro, T; or T, , and k which are
given along with the scattering parameters both without
(Ref. [7]) and with (Ref. [II]) absorption.

The solutions of Eq. (I) are denoted by yl, , and their
adjoint solutions by WI,- =yg'+ FIJI,-. The subscript denotes
a solution which represents (I) a fast wave incident from

the high magnetic field side, (2) a fast wave from the op-
posite side, (3) an incident slow (Bernstein) wave, or (4)
an exponentially growing solution. We also define the
constants r)=le(l+y)/2X l and a=1 —e

For the emission of radiation from an absorbing plas-
ma, the emission equation is obtained from Eq. (I ) by
adding a source term, s(z), to the right-hand side. The
solution of this equation has only outgoing waves. The
source distribution function is a localized function which

is presumed to satisfy some normalization condition
p oo

J p(z)ls(z) l'-dz =Po & 0, (2)
where p(z) is a positive weight function.

The fraction of incident energy absorbed on each
branch is given through the scattering parameters by

[6,9]

&a = I
—ITa I' —1&k I' —l«31', I =1,2,

~, = I —IR, I'- - I c „I

'- —Ic,.l
',

where
l
T

& l

=
l Tz l

= T, and C& 3
=C3& from reciprocity

[9]. Using these expressions, the generalized KirchhoA" s

law has been established to be [6]
E] Ep E3

(3)
A2

where EI, is the power emitted on branch k.
In the general proof of the GKL, Eq. (3), which was

based on thermodynamics arguments, the incident radia-

tion I from the walls of the chamber was in thermal equi-

librium with the ambient plasma. This implies, however,

that the walls and plasma are at the same temperature, so

that the walls (which were presumed to be perfectly ab-

sorbing) radiate as a blackbody at that temperature, so

that I =I gq where I q8 is the radiated po~er from a

blackbody [101. The GKL is then written as

Eg =Aglg8, k = l, 2, 3. (4)

This global proof can now be extended to a local proof by

moving the walls to infinity so that there are only outgo-

ing waves, in which case the emission must be unchanged

provided there is some (nonradiative) energy source to
maintain the temperature.

The GKL of Eq. (4) is to be compared with the classi-
cal expression based on opacity arguments [2] such that

E = (I —e ') Isa, (s)
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where the opacity r is related to the transmission coef-
ficient T =e ' and given by

r =2 1m[k(z)]dz,

where k(z) is the slowly varying wave number from
the dispersion relation and the integral is across the
emitting-absorbing layer. r is generally attributed to ab-
sorption, but often erroneously so, since there is always a
tunneling component in 1m[k(z)] from mode conversion
which is dominant in weak absorption but insignificant in

strong absorption. The transmission coefficient in a mode
conversion layer is T =e ", and independent of absorp-
tion. Numerical studies show that r =2@ even in cases
where lm(k) is not small and the validity conditions for
WKB theory fail. We note that in mode conversion lay-
ers, z may vary widely even when there is no absorption.

The kinds of discrepancies which occur in estimating
emission from the classical formula are illustrated in

Table I for ions and in Table II for electrons which are
obtained from numerical solutions of Eq. (1). The first
two rows list the ratios of the classical emission from Eq.
(5) to the direct emission from Eq. (4) for several values
of k. (ion case) and T, (electron case). This ratio is

rk =(I —e ')/&k . (7)

TABLE I. Ratio of direct ion cyclotron emitted power rz
from Eq. (7) and indirect ratio r& from Eq. (IO) with laa/
lan=0. 5 vs k, (in m ') with n, =l.Ox IO /m, B0=5 T,
R0=2 m, and T; =2 keV.

10

The plasma parameters for both cases were chosen to il-

lustrate the transition from weak to strong absorption.
The gradient scale length for the electron case is more
representative of a torsatron than a tokamak.

The effects of the Bernstein wave on the emission are
several, namely: (1) The radiation along the two fast
wave branches in opposite directions is asymmetric
[6,11]; (2) the radiation detected on either fast wave

branch is actually the sum of the radiation directly along
that branch from the cyclotron layer and the radiation
from a remote region along the Bernstein branch which is

partially mode converted into a fast wave; and (3) there
is a substantial amount of radiation along the Bernstein
branch which is traditionally ignored in transport esti-
mates.

In the first case, the classical radiation expressions used
in electron cyclotron emission (ECE) diagnostics would

yield different temperatures from the two sides unless
corrected for the different absorbed fractions. Examples

TABLE II. Ratio of direct electron synchrotron emitted
power rt, from Eq. (7) and asymmetry ratio Ez/El vs T, (in
eV) with n, =4.0x IO' /m, B0=3 T, and RO=O. I5 m.

r[
I2
E2/El

100

3.15
2.02
0.933

200

1.95
1.36
0.909

Tp

300

1.53
1.17
0.921

1.32
1.10
0.943

500

1.20
1.06
0.962

of the asymmetry are given in the last row of Table II. If
the layer is thin and reflection from a far wall is included,
the source for the reflected wave will have a different
strength from the direct source.

Second, emission from the cyclotron layer and from a
neighboring region in the plasma is inextricably mixed,
further complicating the interpretation of ECE diagnos-
tics. Ray tracing studies indicate that the emitted elec-
tron Bernstein wave is typically reabsorbed a few centi-
meters away from the source, so we may assume that a
blackbody source at the same temperature radiates back
along the ray path, and some is mode converted to the
fast wave branches, adding to the direct emission. This
total emission E~ is given by

&k =(I —T' —IRkl' —
I&k31 )IBB+1~3kl IBB

for k =1,2, and where I88 is the blackbody emission from
the Bernstein wave source point. If we assume I88=I88
for electrons because of the proximity of the two sources,
then the converted terms cancel, so that

E( =(I —T')IBB, E2 =(I T IR21 )IBB ~

since R~ =0 [8]. For branch I, then, the classical result
is reestablished, but for different reasons and only for the
case where Isp =Iqs, while there remains a discrepancy
for branch 2. In Table II, we give the ratio of the emis-
sion on branch 2 to the classical result, which is also the
measure of the asymmetry. As T, approaches zero, the
asymmetry vanishes as the tunneling layer becomes trans-
parent and T 1, while as T, becomes large, the asym-
metry vanishes because the plasma becomes a blackbody
radiator, so the maximum asymmetry occurs at some in-

termediate temperature. For the ions, we do not expect
I88=I88 since the ion Bernstein wave will either be Lan-
dau damped or propagate to the next lower harmonic, so
that the temperature at the remote point will typically
differ by a significant amount. To show the kinds of
effects this would introduce we show in the last two rows
of Table I the ratio of the classical emission to the sum of
the direct and indirect emission for a case where we have
chosen Iqq =

2 Isq for illustration, where, by analogy to
Eq. (7), we write

r2
r]
r2

2.00
3.39

71.5
4.94
1.97
2.75

15.7
1.68
1.88
1.49

5.97
1.16
1.71
1.13

3.57
1.032
1.56
1.027

2.335
1.005
1.40
1.005

rt,'. =(I —e ')IBB/Et, . (10)

The enhancement is important for weak to moderate ab-
sorption, but vanishes in the limit of strong absorption.

In the final case, the Bernstein wave radiation in a

3037



VOLUME 68, NUMBER 20 PH YSICAL REVI EW LETTERS 18 MA+ 1992

fusion plasma represents a source of nonclassical energy
transport, since the energy transport due to this branch is

greater than or equal to the L-mode radiated power, but
the Bernstein wave will not exit the plasma. For elec-
trons, the energy is transported a few centimeters as the
Bernstein wave returns to the same harmonic, but dis-
placed vertically, awhile for ions the distance will be
larger. Either process would appear as anomalous trans-
port since it is unrelated to collisional processes, and may
be a significant source of anomalous diffusion since the
propagation distance for electron Bernstein waves is hun-

dreds of Larmor radii, and thus large compared to the
collision al step size.

Whereas direct calculations of emission from a source
model in both homogeneous and weakly inhomogeneous
media have been previously executed, there are no previ-
ous theories of the source distribution function from a
mode conversion layer where the coupling between the
fast and slow waves must be taken into account. Follow-
ing the spirit of the Auctuation-dissipation theorem or
Kirchhoff's law, which implies that every sink is a source
and vice versa, we obtain the source distribution from a
known sink distribution. In this analysis, we first need to
find integral expressions for the absorption and emission
in terms of sink and source distributions.

An energy Ilux conservation law for the solutions, fl„
without absorption may be obtained from the expression
[7]

P[f] =f'"(f"+f)* f"f*'—yf*—f' —c.c. =const,

so that dP/dz =0. For the corresponding equation with

absorption, Eq. (I), one can show that

Since El, is a functional of s(z) and Aq is independent
of s(z), and since Isa is the maximum possible radiation
which maximizes the right-hand side of Eq. (4), we must

choose s(z) to maximize the left-hand side. Considering
first the emission on a single branch k, we have

(fig) =„ w(z)f*(z)g(z)dz,

then applying the Cauchy-Schwarz inequality to the in-

tegral of Eq. (16) we have

s zs(z)%'t (z)dz ( (+I, i+g) „
This inequality reduces to equality only when f and g are
linearly dependent, so the extremum in Eq. (16) occurs
when s(z) cL w(z)+I*, , and the bound on s(z) is given by

is(z) i'
( )

dz =Pp.

so that we can see that p(z) = I/w(z) in Eq. (2).
Following this prescription, one would have a separate

source for each branch, but the source distribution func-
tion is unique, and it is further constrained by the GKL.
The generalization of the single branch result follows

directly from the methods of the calculus of variations
with constraints, and is given by

s(z)+~(z)d. =max.

The natural constraint on s(z), so that the integral is

bounded, is given by Eq. (2). If we introduce the scalar
product of two integrable functions as

dP[yg] =(h —h*)i+1, (z)i, k =1,2, 3.
dz

3

s (z ) =w (z ) g ag. Og (z ) . (i9)

On the other hand, by the substitution of the asymptotic
forms for yp in the expression for P, one can show that

P[yk(~)] —P[yl, ( —~)] =2zik~s(AI/al, ), (12)

which, along with Eq. (11),gives

(i4)Sl, = Bl,. (y)s(y)dy,

where the functions Bl, (y) are related to O'l, (y) through
some linear transformations [9], and by the asymptotic
behavior of the yg. From the fact that the radiation field
has only outgoing ~aves, the asymptotic solutions lead
eventually to the result that

EI, =al, s(z)%1, (z)dz

Al, =al, „w(z) i el, i 'dz, (i 3)

where a~ =e '-", a2=1, a3 =me ", and w(z)
—= Im[h(z)]/H. s) 0 is the localized absorption function.

From the Green-function representation [9] of the
solution of Eq. (1) with a source, s(z), the asymptotic be-
havior of the radiation field is determined by the integrals

We then choose the complex constants aI, to maximize

El, /Al, , constrained by the conditions of the GKL and by
the normalization condition of Eq. (18). The problem is

thus reduced to finding the aI, which determine the
source distribution function.

We may choose any one al, to be real and determined

by Eq. (18) with s(z) from Eq. (19). Then we must add

the GKL constraints which make the extremal problem
nontrivial. The solution method will be detailed in a sub-

sequent paper, but the process leads to unique values for
the ap and Po and hence to a unique source distribution
function. We also note that the expression of Eq. (19)
has the clear physical interpretation of being the loca(
KirchhoA"s law for a nonuniformly magnetized plasma.

In Figs. I and 2, we show the quantity is(x)i for each
case of Table I and Table I I, where x is in centimeters
and the origin is at the harmonic. The source strength in-

creases in magnitude and width as the absorption in-

creases with k for the ions and with T, for the electrons.
For the ion source distribution function, the nominally
Gaussian shape is shifted due to mode conversion effects,
while the shift in the electron synchrotron case is ap-
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FIG. I. Ion distributed source strengths (s(x) )
2 for values of

k, given in Table I.
FIG. 2. Electron distributed source strengths ~s(x)~2 for

values of T, given in Table II.

parently due more to the relativistic shift and broadening
than to mode conversion effects.

fn conclusion, it has been shown that the efl'ects of in-

homogeneity in a mode conversion layer on emission

cause it to differ substantially from the classical value in

many cases. The reduction of the emission due to mode
conversion effects is at least partially compensated due to
the conversion of an incident Bernstein wave adding to
the direct emission, but there is still asymmetry between

the emission from the high- and low-field sides. For all

cases, except in the limit of strong absorption, the concept
of opacity must be revised to include the mode conversion
effects. In the strong absorption case, the emission on

each branch is blackbody, and this is common for the
second harmonic where most ECE diagnostics operate, so
no discrepancy is expected. Some ECE diagnostics are
done at ra 3tu„, however [3], where the absorption is

not so strong and mode conversion effects are important.
For ions, the mode conversion changes are nearly always
important, since ion cyclotron harmonic emission is rarely
blackbody and the compensating effects from the incident
Bernstein wave are much weaker.

For overall synchrotron emission from a plasma, there
are contributions from many harmonics, and typically all

but the second will be reduced due to the generalized
Kirchhoff"s law. We find that the Bernstein wave, which
emits more strongly than the fast wave branches, carries
a nontrivial amount of energy, and leads to anomalous

energy transport. Through the variational analysis

developed and the discovery of the local Kirchhoff"s law,

we have also calculated for the first time the local source
distribution function in a mode conversion layer.
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