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We examine the derivation of eddy-diffusivity equations for transport of passive scalars in a turbulent
velocity field. Our main contention is that, in the long-time-large-distance limit, the eddy-diffusivity
equations can take very different forms according to the statistical properties of the subgrid velocity, and
that these equations depend very sensitively on the interplay between spatial and temporal velocity Auc-

tuations. Such crossovers can be represented in a "phase diagram" involving two relevant statistical pa-
rameters. Strikingly, the Kolmogorov-Obukhov statistical theory is shown to lie on a phase-transition
boundary.

PACS numbers: 47.25.—c

Turbulent transport is ubiquitous in many processes in

nature, ranging from atmospheric diffusion of clouds and
the spreading of pollutants in large bodies of water [I] to
ionic diffusion in high-energy plasmas like the Sun [2]. A

fundamental feature in the physics of turbulent transport
is the presence of a wide, self-similar spectrum of scales
of motion (e.g., the atmospheric turbulence with a cas-
cade of approximately 10" active wave numbers). Pre-
dicting the macroscopic behavior of advected passive sca-
lars and deriving "eddy-diffusivity" equations for large-
scale motions are issues of theoretical and practical in-

terest. In fact, passive turbulent transport is a reasonably
simple situation where various field-theoretical methods
of turbulence theory can be put to test [3-5]. On the
practical side, the introduction of eddy diffusivities to
model enhanced diffusion by inertial-range modes is

necessary in turbulence calculations even with current
supercomputers [6]. In this Letter, we show that the
correct eddy-diffusivity equations for a given random ve-

locity are determined by the joint values of two statistical
parameters, e and z, according to a suitable "phase dia-
gram. " This is due to the effect of the interplay of spatial
and temporal velocity fluctuations at the subgrid level on
the macroscopic scale.

A convenient starting point is to use the Kolmogorov-
Obukhov [7,8] statistical theory of turbulence, which pos-
tulates the scaling relations

E(k ) cx /k, ko (k ) ce k t

for the kinetic energy E(k) and the characteristic fre-
quency ko(k) for velocity modes with wave number k in

the inertial range k; &k &ky. Here k; and kd are, re-
spectively, the reciprocals of the integral and the dissipa-
tion length scales. The ratio b=k;/kd« I is proportional
to Re, where Re is the Reynolds number. Within a
statistical framework, and using units of dissipation
length and time scales, the turbulent velocity field u(x, t)
can be written as

( t) —2+i(k x+mt)du(k )
U

where Cu(k, ko) is the random spectral measure [9] satis-
fying Cu(k, ko) =Cu( —k, —ko), (Cu(k, ko)) =0, and

where f(r) (the Fourier transform of @) decays as
r ~. Thus, (2) and (3) simply express the fact that a
cascade exists in wave-number space and that moreover
the decorrelation in time of different modes is wavelength
dependent with large-scale structures decorrelating more
slowly than small ones, according to the value of z. Note
that, from (3), the overall kinetic energy at wave number
kis

p + oo p + oo

E(k, ko)cko =U @(ko)cko k '

for 6(k &1,
and this is consistent with (I ). This nondimensionaliza-
tion by the dissipation scales in (3) leads to infrared
divergences in the velocity spectrum as Re ~, or

(Cu;(k, ko) Cu, (k', ko'))

=b(k+k')b(ko+ko')[b;, —k;/ /k'] E(k, ko)CkCko

(C —I)kd 'nd

(2)
Here brackets denote statistical averaging, k =iki, C is
the space dimensionality, Od denotes the area of the d-
dimensional sphere, and E(k, ko) is the energy density
given by

U k' '[k =@(ko/k )], for b~k & I,
0'f k(bor /k)]

where 8= 3 and z= —', , in accordance with (I). The
function @ is a positive structure function; its specific
form is irrelevant for the present discussion. We assume,
naturally, that %(0))0 and that f+ +(ko)Cko & ~.
Equation (3) is equivalent to stating that the autocorrela-
tion function in time of the velocity modes at wave num-
ber k is

( cu( kt) cu/( kt')) = U k ' '[b 1
—k;kj/k ]

xf(k it —t'i )ck/(c —I )k ' Od,
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equivalently, 6 0 which must be "renormalized" in or-
der to obtain the eddy-diffusivity equations. The equa-
tion describing the evolution of a passive scalar T(x, t) is

+u(x, t) &T(x,t) =D~T(x, t),
Bt

where D denotes molecular diffusivity and

=g;(8/t)x;) . We assume that the initial data T(x, t
=0) varies slowly with respect to the integral length

scale, as is natural for a theory for eddy digusi|. ity, so
that T(x, t =0) Tp(bx) for some initial profile Tp(x).
We seek to determine a time-scaling function p=p(b)
such that the limit

lim(T(b 'x, p 't ))=T(x, t ) (4)
8)0

is a function evolving according to an effective equation
of motion, which describes the long-time-large-scale
transport of the averaged scalar. [In particular, we

should have T(x, t)WO and T(x, t)WTp(x) in (4) for
t )0.] We refer to this problem as the renormalization
problem, not to be confused with the renormalization-

group (RNG) procedure [4] sometimes used to solve it.
It is useful to consider the exponents e and z as param-

eters that can vary in a neighborhood of the Kolmogorov
values e= —', , z = —', . In previous work [10,11], we intro-
duced and rigorously analyzed the renormalization prob-
lem for anisotropic "strattfted" flows with turbulent ve

locity statistics of the form u(x, t) =[u(xz, t),0], with

x (xi,xz). We calculated the function p=p(b) as well

as the effective equations of motion for T(x, t) for e and z

varying in the ranges —~ & e & 4 and z )0. The results
can be summarized in a "phase diagram" in the (e,z)
plane, in which the exponent v= v(e, z) =limslp(logp/
logb) plays the role of an order parameter, in analogy
with statistical mechanics. The diagram has several
"phases, " corresponding to different functional forms for
v(e, z) and different effective equations [10,11]. The por-
tion of this phase diagram for z & I is reproduced in Fig.
l. Region I corresponds to normal (Fickian) diffusion,

p(b) b. Here we focus attention on regions II and III
and on the segment separating them, which contains the
Kolmogorov value ( —', ,

—', ). Rigorous analysis of the mod-

el [10,11] [which corresponds to an anisotropic version of
(2) and (3), with d I ] shows the following: (i) In re
gian 11 we have v(e, z) (4 e z)/2 and—th—e effective
evolution equation is (8/rlt)T Dii(8 /Bxi )T, with an

eddy diffusivity given by D&i =%(0)U /(2 —e —z); (ii) in

region 111 we have v(e, z) = I —e/4 and an effective
diffusion equation (t)/t)t ) T =Disci (t) (a'/a ')xT, with

Disci (t) =tU [j -+ %(tp)dtp]/(e —2); and (iii) on the
boundary between regions 11 and 111, corresponding to
8+2z =4, 0 & z (1, the scaling function corresponds to
v(e, z) =(4 —e —z)/2=1 —e/4, but the eddy diffusivity is

given by

The fact that the Kolmogorov regime corresponds to a

2 3 III

&=48=2 I
3

FIG. 1. The phase diagram for turbulent transport, for
— & e (4, 0 & z & 1. Region I corresponds to Fickian scal-
ing v(e, z) I. In region II, we have v (4 —8—z)/2 and in re-
gion III, v I —8/4. The Kolmogorov regime e--3, z=-', is

located on the boundary between the latter regions and is

marked by .

phase boundary is not an artifice of the model discussed
in Refs. [10,11], but rather a general property of homo-

geneous isotropic turbulent transport in arbitrary space
dimensions. Indeed, the purpose of this Letter is to estab-
lish that the renormalization problem for turbulent
transport by isotropic, homogeneous random ftelds in d
space dimensions has exactly the same phase diagram as
in Fig. l for (e,z) in a vicinity of the Kolmogorov values.
Moreover, there is a clear physical interpretation of re-
gions II and III; region II corresponds to the statistical
regime in which time-decorrelation effects are dominant
and the Kubo formula [12] for the eddy diffusivity is ex-
act after a suitable renormalization to remove the in-

frared divergence. On the other hand, region III corre-
sponds to the regime for which time-decorrelation effects
are completely negligible in the long-time-large-distance
limit and hence G. I. Taylor's hypothesis of "frozen" tur-
bulence [13] is rigorously valid. This result provides, in

our opinion, a useful underpinning for understanding the
dynamical implications of intermittency corrections to
scaling [6-8,14] for the classical k t law. Next, we de-
scribe the particulars of the renormalization problem for
isotropic turbulence in regions II and III and on the seg-
ment separating them.

Renormalization in region 11.—This region is defined

by the inequalities t. +z & 2, 8+ 2z (4, z )0. Inspection
of the (Taylor) diffusivity in a second-order perturbation
calculation shows divergence as 8 0 with the usual
diffusive scaling p(b) =b so that anomalous diffusion
occurs and the appropriate time-scaling function must
satisfy p(8) « b. Motivated by the model in Refs.
[10,11], we set p(b) =b ', and consider the equa-
tion of motion for the rescaled function Ts(x, t)
=T(b 'x, p t) which can be written in the form

Q/Bt)Th(x, t)+[a(b)] '&(x, [o(&)l 't) +To(x, t)
=b'+. 'D~T, (x,t), (S)
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with (y(h) =b = p=& ' = ~ and

V(x, t) =8'" 'u(8 'x p 't). (6)

Note that both o(8) and the rescaled diff'usion coefficient
tend to zero as b 0 precisely in region II. From (6), we

calculate that the renormalized Kubo diAusivity Dl*t for
(5) satisfies

Renormalization in region III.—In the adjacent re-

gion, defined by the inequalities 4 —2z & |.&4, the ap-

propriate scaling function suggested by the model is

p(b') =b' 'I . To justify the scaling for multidimensional

isotropic turbulence, we note that the scalar Ts(x, t)
satisfies the transport equation

dD ~0 &V(x, t).V(0,0))dt
(II/(It)T, (x, t)+ W'"(x, t) VT (x,t) =8"DI(.T,(x,(),

(9)
gZ+: —2

& u(0, t).u(0, 0))dt
where W (x, t) is the auxiliary velocity field given by

$t+ 2 —2U 2@(0) k i —t —= dk

U'e(0)
2 5 z

(7)

Thus, after renormalization according to the anomalous
scaling p(8) =b ' ' I, the velocity fteld in (6) satis
Pes the usual hypothesis for the validity of the Kubo
type weak coupling approximation Nam. ely, the tern

poral fluctuations are on a scale which is much faster
than the spatial fluctuations, since (y(b') 0 for b 0,
and the di)lit'usivity in (7) is finite We. conclude that, as
8 0, we have Iimsip&Ts(x, t)) =T(x,t), where this func-
tion satisfies the effective diffusion equation (it/rtt )
x T(x, t ) =Dii I( T(x, t ) with the eddy diffusivity

W"'(x, t)=b" '"'u(8 'x, p 't).
Because of the inequalities satisfied by t. and z in region
III, the renormalized fields W enjoy the following

properties: (i) the mean-square velocity &IW(x, t)I ) re-

mains uniformly bounded as b 0; and (ii) under

reasonable statistical mixing assumptions [16] on the
original velocity u(x, t), it can be shown [17] that the
random fields Ws(x, t) converge in distribution to a
time-independent Gaussian field W (x) with covariance

R;,'"(y) =& W,"'(x+y) W,"'(x))

=cU' k'-' '(b —k, k /k')
4k&] ff l J

Di*i =U 4(0)/d(e+z —2) .
X 2 ky dk

(d —1)nd
' (io)

Analogous results for equations such as (5) have been ob-
tained mathematically by several authors [15].

R j (y, r) =&W; (x+y, t+z)WJ (x, t))

where c =f —+ @(tp)dtp. These properties are immediate
consequences of the fact that W (x, t) has an O(1) co-
variance R;~. (y, r) given by

r

U2 k2 —d —t, (k)
4 1 (k &8 14 (k)-

P; (k)
—2~i g y+s&co~) dkdm

(d —i)n, '

where 8=(e+2z —4)/2, P; (k) =b~t —k;k~/k . From
the last equality in (11), R;t~ (y, r ) converges to R;( (y)
as the cutoff' 8 0, and the convergence in distribution of
W to W follows. From (9), molecular diffusion is

negligible in the limit 6)0 so we anticipate from (10) and

(11) that the limiting eddy-diffusivity equation is trans-

port by the steady incompressible velocity field %; thus
Taylor's hypothesis of frozen turbulence is valid for re-

gion III. Furthermore, given a nonconstant initial datum
Tp(x), for any sequence 8„a0 such that the !imi t

lims ip&Ts„(x,t)) =T(x,t) exists, we have T(x, t)&0 and
T(x, t )A Tp(x) and, therefore, the anomalous exponent
v(e, z) =I —e/4 is indeed correct for multidimensional

transport in region III ~ These results can be established
with full mathematical rigor [17] but are subtle because

I
the limiting steady veiocity field W(x) is not smooth. In

general, the eddy-diffusivity equation is nonlocal in region

III. Rigorous upper bounds and a characterization for
the limiting Green s function utilizing Stieltjes measure
formulas [18,19] under additional assumptions are also
presented in Ref. [17].

The boundary between 11 and III.—For (e,z) on the

interface between regions II and III, i.e., e+2z =4,
0&z &1, we take p(8) =8" ' = t =8' 't (the ex-

ponent is continuous). The auxiliary velocity fields

W (x, t) in (10) have the covariance R;t~ (y, r) in (11)
with 0=0. Therefore, IW (x, t)] converges [17] as
6 0 to a Gaussian field W( (x, t), under suitable mix-

ing assumptions. Moreover, W (x, t) has covarianee

R (y, r) =U
fO

k 2 —d —e —=@ P (k) 2xi(k y+ruridkd~
k=

In particular, the limiting random velocity field is time dependent. Following the reasoning described earlier for region
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III, it can be established rigorously [17] that the eddy-
diffusivity equation corresponds to transport by this
time-dependent random velocity field and also that the
correct anomalous exponent is v(e, z ) = (4 —e —z )/2
= I

—e/4. In particular, the temporal fluctuations of the
turbulent velocity u(x, t) in Kolmogorov-Obukhov tur
bulence (e= —', , z =

3 ) are not irrelevant in the long
time-large-distance limit. Hence, the boundary between
regions II and III (e+2z 4, 0 & z & I ) has remarkable
crossover properties [10,11,20]. Physically, it corre-
sponds to statistical regimes for turbulent velocities in

which the characteristic wave-number-dependent fre-
quency to(k) =k' satisfies the dimensional relation

1/2

to(k) cx:k „E(k')dk'
where E(k) cx: k ' ', 2 & e & 4.

In conclusion, we have shown that the large-scale-
long-time properties of passive scalars in turbulent trans-
port depend crucially on the form of the self-similar ener-

gy spectrum E(k, to) through the exponents e and z,
which characterize, respectively, the energy spectrum and
the turnover frequency of modes of different wavelengths.
Eddy-difl'usivity equations for isotropic, homogeneous
turbulence with (e,z) in regions II and III have been es-
tablished, with scaling exponents v(e, z) which agree with
the ones for the simple stratified model [10,11] in those
regions. The relations v I —e/4, max(2, 4 —2z ) & e
&4, v (4 —e —2)/2, and 2 —z & e&4 —2z imply that

the knowledge of two numbers among F,z, v determines
the third one. Thus, we find that the statistical regimes
which are consistent with the Richardson X —T law
[21]—i.e., v —,

' —must necessarily satisfy either e
z + 3 or e +z '3, 0 & z & 3 ~ This result agrees with

the corresponding theory for relative diffusion of pairs of
particles which was established in the model of stratified
flows for all values of (e,z) [I ll. It can also be shown
that, for z & 1, and thus in a neighborhood of the
Kolmogorov-Obukhov regime, the theory presented here
is Galilean invariant, i.e., it is not modified if a uniform
mean flow u is added to the turbulent velocity.

The rigorous renormalization theory developed here
provides an important nontrivial test problem for the ca-
pability of RNG and renormalized perturbation theory
methods to reproduce features of the eddy diffusivity
[20].
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