
VOLUME 68, NUMBER 20 PH YSICAL REVI E% LETTERS 18 MAY 1992

Ordering Dynamics in the Two-Dimensional Stochastic Swift-Hohenberg Equation
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Numerical and analytic techniques are used to study the roll patterns which appear following a
convective instability as modeled by the Swift-Hohenberg equation. The results of this work reveal
the presence of a disordered state and a quasiordered state at large and small noise strengths,
respectively. The dynamical approach to these states is shown to be rapid in the former case and
slow in the later. Both numerical and analytic calculations indicate that the slow dynamics can be
characterized by a simple scaling relationship.
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The onset and formation of roll patterns in Rayleigh-
Benard convection is a complex nonlinear process that
has been examined extensively in recent years [1—10].
In a typical experiment, a quiescent conducting state is
brought above the convective threshold giving rise to con-
vective rolls of arbitrary orientation (in large aspect ra-
tio systems). When all sources of fluctuations are small

(let e' denote their amplitude) and boundary effects are
negligible, the subsequent evolution is achieved through
the reorientation of the rolls and the elimination of de-
fects. In what follows a numerical and analytic study
of a simple model of this process, known as the Swift-
Hohenberg (SH) equation, is presented for a large aspect
ratio system. Our investigation reveals several interest-
ing features of the SH equation, including the presence of
a transition between an ordered state at small e' (charac-
terized by large regions of parallel convective rolls) to a
disordered state at high e'. Furthermore, it is shown that
the dynamics at low e' can be understood in terms of a
dynamic scaling relationship similar to that encountered
in domain growth phenomena [11].

The stochastic SH equation models the onset of
Rayleigh-Benard convection through a two-dimensional
real order parameter field, g, which is commensurate
with the convective rolls. It is derived from the Buid
dynamics equations in the Bousinesq approximation in
the limit of large Prandtl number. The dimensionless
form of the equation is

—(1+V ) @(r,t) —g (r, t)+rl(r, t),

where p is a dimensionless control parameter, (rl(r,
t)rl(r', t')) = 2e'b(r —r')8(t —t') and e' is the noise in-
tensity. The salient feature of this equation with the
appropriate boundary conditions is that its associated
Lyapunov functional is minimized by a periodic function
with a nonzero wave vector (i.e. , ]]ko]] = 1) that corre-
sponds to a convecting state comprised of a set of parallel

rolls.
The intent of this work is to understand both the na-

ture of this convecting state and how it is dynamically ob-
tained from an initially unstable state (defined by g = 0).
To further this goal Eq. (1) was numerically evaluated on
a two-dimensional square grid at discrete time intervals.
Euler's method was used to discretize the time derivative,
while the discrete approximation used for the Laplacian
operator included contributions from nearest and next-
nearest neighbors. The maximum size of the grid spac-
ing (Ax) is limited by the size of the convective rolls

(2x/ko —2m). A value of Ax = vc/4 was selected to sat-
isfy this constraint, while the time step (6t) was chosen
to be At = 0.05 to avoid numerical instabilities. Test
runs with smaller grid spacings indicate that our results
for the structure factor (to be defined below) near ko = 1

are insensitive to decreasing the grid size. The bulk of the
calculations were performed on a grid of 512 x 512 nodes
with periodic boundary conditions on Q for e = 0.0, 0.05,
and 0.075 [where e = /e(Ax) ] at p = 0.5. All results
were averages over 25 independent runs. Additionally, at,

the same p, smaller systems (i.e. , 256 x 256) were used
to examine both the dynamics (at e = 0.025, 0.065, and
0.1) and stationary solutions (at a large number of val-

ues of e ranging from 0.0 to 0.09). The initial condition
for nonzero e was chosen to be g(r, t = 0) = 0, whereas
for e = 0 we chose @(r, t = 0) to be a Gaussian random
variable centered at zero of width 0.1.

The numerical results reveal a qualitative difference
between the calculations performed at e = 0.075 and
0.1 from those at ~ = 0.065, 0.05, 0.025, and 0.0. A
rapid (exponential) relaxation to the asymptotic station-
ary state was observed for the two largest values of e

while a slower (power law) evolution occurred at the
smaller values of e. The qualitative difference between
the high and low e runs is also apparent in the latest
configurations. In Fig. 1 the one-point distribution func-
tion p(Q) is depicted for several values of e at the latest
times studied. The spherically averaged structure factor,
S(k, t) = (]g(k, t)]2), where k is the radial component of
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FIG. 1. One-point distribution function p(@) and circu-
larly averaged structure factor S(k, t) (inset) obtained from a
numerical solution of Eq. (1). The curves for e = 0.0, 0.05,
and 0.075 are labeled I, II, and III, respectively. The thick
solid line corresponds to a sine function.

y
FIG. 2. Portions of size 100 x 100 of typical configura-

tions obtained. The large and small circles correspond to the
large and small (see text) numerical simulations conducted at
~ = 0.075, 0.05, and 0.0, and e = 0.025, 0.065, and 0.1, re-

spectively. The configurations labeled isotropic, nematic, and
smectic correspond to e = 0.075, 0.05, and 0.0, respectively.
In all these plots the lines drawn are the lines of g(r) = 0.

the wave vector, is shown at the same times in the inset of
Fig. 1. For e = 0.0 and 0.05, Eq. (1) was solved for times
up to t = 104, while for e = 0.075 the calculations were
terminated at t = 700, since dynamical evolution past
t = 200 was beyond numerical resolution [i.e. , no further
evolution of S(k, t) and p(Q) could be distinguished past
t = 200; one run was taken up to t = 104 for verification].

Figure 1 indicates that the latest configuration at
e = 0.075 is characterized by a diffuse peak in the struc-
ture factor and a single peak in p(Q) centered at g = 0.
In contrast, the latest configurations at e = 0.05 and 0.0,
for example, had not reached a stationary state and gave
rise to a sharp peak in S(k, t) and a bimodal distribution
in p(g). The reason for the rapid relaxation to equi-
librium at e = 0.075 is that the final state has a finite
correlation length which is evident in the difFuse peak in

S(k, t) If an analogy. with liquid crystals can be made, as
suggested by Toner and Nelson [7, 8], the various regimes
can be identified as an isotronic regime with short-range
order (for e ) eKT), a nematic or Kosterlitz-Thouless [12]
regime with "quasi"-long-range orientational order (for
0 ( e ( eKT), and a smectie regime with long-range ori-
entational and translational order (at e = 0). Portions of
typical final configurations along with the phase diagram
are shown in Fig. 2. Further indication of the transition
at p = 0.5 was obtained by first reaching a stationary
solution at ~ = 0.09 and then decrementing ~ in steps of
0.005 at time intervals of 10 . The results of this study
indicate that a transition [denoted by a sharp decrease
in the peak in the structure factor and a crossover from

a bimodal to unimodal distribution in p(Q)] occurred in
the interval eKT = 0.065 —0.070. It should be noted
that while the numerical work was consistent with such
a transition, it was not possible to distinguish between a
transition from an isotropic to a translationally ordered
state or from an isotropic to an orientationally ordered
state.

The analysis of the dynamics below eKT is motivated
by an approximate solution obtained by two of us [2]
through a singular perturbation solution of Eq. (1), in

which S(k, t) was found to obey the following scaling re-
lationship in the late-time, k = 1 limits:

where z is a dynamic growth exponent and f(z) is a
scaling function. The implication of Eq. (2) is that
all lengths (except for the convective roll width) should
scale in time with the same dynamic exponent. With
this in mind, several independent measures of length
scales were calculated: the height (A), the width (iu),
and the first five moments of S(k, t). A and zu were

obtained by fitting S(k, t) by the form Ae
(where ko —1) and the moments m~ were defined to be

m„(t) = j&'+
&,I dk~k —ko~"S(k, t). According to Eq.

(2), m„(t) oc t ", uj oc t *, and A oc t*. In Fig. 3 all
measured quantities are displayed for e = 0.05. The cor-
responding exponents measured for these length scales
were all within I'%%uo of 4. For e = 0.0 the exponents were
all within 2% of s. The difFerence between the exponents
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FIG. 3. Amplitude A(t), width ui(t), and first five mo-

ments m„(t) of S(k, t) as defined in the text displayed for
t = 0.05. The solid lines are presented as guides to the eye
and all have slope 2: = 4. Enset: AS plotted on a logarithmic
scale for p = 0.5.
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FIG. 4. The scaling property of the structure factor is
illustrated by plotting S(k, t)/t vs (k —ko)t at various
times for e = 0.05. The open squares, crosses, and solid circles
correspond to t = 10, 10, and 10, respectively.

obtained at e = 0.05 and 0.0 is most likely due to the dif-

ficulty in removing defects at e = 0 (visual examination
of the configurations reveals a higher density of defects at
e = 0.0). Equation (2) is further examined for s = 0.05
in Fig. 4, where S(k, t)/t* is plotted versus (k —ko)t*,
at t = 102, 10s, and 104. All curves overlap near k = ko
when an exponent x =

4 was used. Similar agreement
was seen for s = 0.0 with z = s. Although the statistics
collected for e = 0.025 and 0.065 were not sufficient to
obtain accurate exponents, the measured exponents were
much closer to 4 than s.

The agreement of the exponents measured from the
difFerent lengths for 0 & e & eKT is a strong indication
that the dynamic scaling relationship is valid. The expo-
nent obtained is, however, smaller than that anticipated
in previous work (i.e. , 2: = 2) [2]. To address this discrep-
ancy an alternative calculation is presented to investigate
the possible existence of crossover effects in the absence
of defects. To do so consider a set of parallel stripes
the orientation of which varies slowly in space. The dy-
namics of such a configuration can be best studied by
introducing a coordinate system that tracks the interface
given by the spatial points at which @ = 0. Specifi-
cally the Cartesian coordinates (z, y) are mapped onto
orthogonal curvilinear coordinates (u, s), where u and s
are locally normal and parallel to the lines @(r,t) = 0,
respectively. By assuming that the stationary solution of
the one-dimensional Swift-Hohenberg equation is a good
approximation in the normal direction, and that the local
curvature (K) of the roll pattern is small (i.e. , z/ko « 1),

v = ar+r„—(,— (4)

where v = Bu/Bt, a = ——2(1 + P/cr), a = f du(BQ'/
Bu)2, P = f du(BQ'/Bu)(Bsg'/Bus), (((') = orb(s —s')
x b(t —t'), and ei = 2e'/ir. The coefficient a and the in-
terfacial noise amplitude er can be estimated by using an
approximate one-dimensional stationary solution derived

by Porneau and Manneville [6] which is valid in the limit
of small p. In this approximation a is extremely small

(a = 12 x 10 for p = 05), while ei = 3e'/2vrp . The
rolls will break apart when the interfacial noise ampli-
tude is of the order of the roll width. Thus a transition
to an isotropic state occurs when e' oc p .

A dimensional analysis of Eq. (4) reveals that the rolls
relax asymptotically at a rate of t ~, while at earlier
times (a2t/2 & 1) a smaller relaxation rate is expected.
In the inset of Fig. 3 the deviations (4S) of the arc
length from its asymptotic value are plotted for p = 0.5,
showing that a crossover from a relaxational rate of t
to the asymptotic rate of t /2 is expected to occur at
t = 10 —10 . From this result it can be inferred that

Eq. (1) becomes

(Bg'/Bu)(Bu/Bt) = 2r(BQ'/Bu—+ Bsg'/Bus)

r„(BQ'/Bu—) + g, (3)

where r» ——B r/Bs and g' is a solution of g'(u(r, t))s
= [ps —(1 + B2/Bu2) 2]g'(u(r, t) ) . Applying the proj ec-

tion operator, f 1 &z& 1
du(BQ'/Bu), to Eq. (3) produces

the following result:
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a regime characterized by an efFective exponent z =
&

could be obtained for the first four or five decades in time,
before taking on the asymptotic value of x = z. Despite
this appealing interpretation of our numerical results it is
important to emphasize that no numerical evidence for
an asymptotic exponent of x =

2 has been found, nor
is there any evidence of crossover behavior [which would
lead to nonscaling behavior in S(k, t)].

To recapitulate, the results of both numerical and an-

alytic calculations indicate the presence of a transition
between a quasiordered and an isotropic state, which
are characterized by long- and short-range order, respec-
tively. An independent estimate of the transition line

(e oc pz) was obtained from the interfacial calculation.
In addition, dynamical scaling with a growth exponent
of x =

4 was observed in the nematic region. The value of
x found disagrees with an earlier theoretical calculation
and we have presented a possible resolution of the dis-

crepancy. We are, however, unable to explain the smaller
exponent of z = s observed for e = 0. Although this
work focused on the stochastic Swift-Hohenberg equa-
tion, we expect that both features discussed, namely, the
existence of a transition between a quasiordered and a
disordered state, and the asymptotic dynamical scaling
behavior, are generic features of two-dimensional systems
in which a finite wavelength is selected for the asymptotic
ordered state. For example, recent experimental stud-
ies of electrohydrodynamic convection in nematic liquid

crystals [13] have been able to detect and quantify the
amplitude of the fiuctuations before onset (fiuctuations
in simple liquids are believed to be too small to produce
observable effects such as the ones presented here). Fur-

thermore, since typical roll widths in these systems are
of the order of microns, large aspect ratio samples are
readily available. Experimental verification of the issues

discussed in this paper seems therefore possible.
This international cooperation has been made possible

by a grant from NATO within the program "Chaos, Or-

der and Patterns; Aspects of Nonlinearity, " Project No.

CRG 890482. This work is also supported by the Natural
Sciences and Engineering Research Council of Canada,
les Fond pour las Formation de Chercheurs et 1'Aide a
la Recherche de la Province de Quebec, and by the Su-

percomputer Computations Research Institute, which is

partially funded by the U.S. Department of Energy Con-
tract No. DE-FC05-85ER25000. All the calculations re-

ported here have been performed on the 64k-node Con-

nection Machine at SCRI. We thank Maxi San Miguel,
Mike Kosterlitz, Bertrand Morin, and Emilio Hernandez-

Garcia for useful discussions.

[1] J. Swift and P. C. Hohenberg, Phys. Rev. A 15, 319
(1977).

[2 K. R. Elder and M. Grant, J. Phys. A 23, L803 (1990).
[3] V. Steinberg, G. Ahlers, and D. S. Cannell, Phys. Scr.

T9, 97 (1984).
[4] C. W. Meyer, G. Ahlers, and D. S. Cannell, Phys. Rev.

Lett. 59, 1577 (1987).
[5] H. Xi, J.Vinals, and J.D. Gunton, Physica (Amsterdam)

177A, 356 (1991).
[6] Y. Pomeau and P. Manneville, J. Phys. (Paris), Lett. 40,

L609 (1979).
[7] D. R. Nelson, in Phase 'transitions and Critica/ Phenom

ena, edited by C. Domb and J. L. Lebowitz (Academic,
London, 1983), Vol. 7.

[8] J. Toner and D. R. Nelson, Phys. Rev. B 23, 316 (1981).
[9] H. R. Schober, E. Allroth, K. Schroeder, and H. Muller-

Krumbhaar, Phys. Rev. A 33, 567 (1986).
[10] J. Vinals, E. Hernandez-Garcia, M. San Miguel, and R.

Toral, Phys. Rev. A 44, 1123 (1991).
[11] J. D. Gunton, M. San Miguel, and P. S. Sahni, in Phase

transitions and Critical Phenomena, edited by C. Domb
and J.L. Lebowitz (Academic, London, 1983), Vol. 8.

[12] J. M. Kosterlitz and D. J. Thouless, J. Phys. C 6, 1181
(1973).

[13] I. Rehberg, S. Rasenat, M. de la Torre, W. Schopf, F.
Horner, G. Ahlers, and H. R. Brand, Phys. Rev. Lett.
67, 596 (1991).

3027


