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Self-Trapping of Traveling-Wave Pulses in Binary Mixture Convection
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Localized traveling-wave trains (LTW) have been observed in various experiments on binary mixture
convection. I show that the commonly used complex Ginzburg-Landau equations, which fail to describe
a characteristic feature of LTW—their extremely slow drift —break down in these systems and I derive
a new set of coupled equations which takes into account the slow dynamics of the concentration field. It
possesses slow LTW over a wide range of parameters. In addition, it supports LTW even if it has only
real coefficients and is therefore far from the nonlinear Schrodinger limit.

PACS numbers: 47.20.Ky, 03.40.Kf, 47.25.Qv

Convection in binary mixtures has turned out to be a
very rich pattern-forming system, in particular in the re-
gime where convection arises through a Hopf bifurcation.
In most experimental situations this bifurcation is sub-
critical and leads to traveling waves. The most striking
phenomenon in these systems is the appearance of co-
herent structures in the form of localized traveling-wave
trains (LTW). They have been first observed in finite
geometries [I] where their origin has been attributed to
the convective nature of the instability and the reflection
of waves at the side walls [21.

It came as a great surprise when it was found that even
in annular geometries localized wave trains can arise [3].
Meanwhile, such LTW have been found by various exper-
imental groups [4] as well as in full numerical simula-
tions of the two-dimensional Navier-Stokes equations [5]
over a whole range of values of the separation ratio S and
of the Rayleigh number R [6]. More precisely, two
classes of LTW seem to exist: discrete sets of pulselike
structures and a continuum of LTW of seemingly arbi-
trary length which resemble a pair of fronts connecting
the convective and the conductive states. All of these
structures share one feature: Their drift velocity is ex-
tremely small, if not zero altogether [7].

Theoretically, one would like to understand the struc-
tures using simpler model equations like the Ginzburg-
Landau equations which can be derived from the basic
Navier-Stokes equations if the convection amplitude is
small. In the present system a quantitative description
may only be expected in the (small) parameter regime in
which the subcriticality of the bifurcation is weak. Nev-
ertheless, even a semiquantitative or at least qualitative
understanding would be of great interest. In equilibrium
systems, for which the coe%cients of the corresponding
Ginzburg-Landau equation are real, localized structures
exist only as "critical droplets" which are unstable.
Therefore, great progress was achieved when it was real-
ized by Thual and Fauve that in the complex Ginzburg-
Landau equation (CGL) for the convective amplitude A,

which is an extension of the nonlinear Schrodinger equa-
tion, pulses can be stable due to dispersion and nonlinear
frequency renormalization [8,9]. Their result triggered
very detailed analyses of the CGL focusing on pulses as
well as front pairs [10-12]. In all of these analyses a cen-
tral problem, however, remains: Any localized solution of
the CGL drifts with a velocity which is essentially deter-
mined by the linear group velocity s of the waves. To
state it more precisely, the drift velocity v is to lowest or-
der given by s and is at higher order affected by the non-
linear gradient terms [13],

v =s+f(d), d2) . (2)

The linear group velocity, however, is much larger
[14,15] (up to a factor of 30) than the observed drift ve-

locity of the LTW. Therefore, within the CGL a delicate
balance of s and f(dl, d2) would have to occur over a
range of S and R. In addition, one should also be able to
find fast LTW in some range, which has not been report-
ed. This indicates that the CGL may not be adequate to
describe LTW in these binary mixtures even on a qualita-
tive level [7,16].

In this Letter I suggest that the slow drift velocity of
the LTW is due to an additional slow time scale in the
binary mixture systems which leads to an additional
dynamical degree of freedom beyond the convective am-
plitude A. It corresponds to a concentration mode and is
due to the small Lewis number L which measures the ra-
tio of molecular to thermal diffusion. The relevance of
the concentration field was already noted in the full nu-
merical simulations of the Navier-Stokes equations by
Barten, Liicke, and Kamps [5]. Considering the limit of
small Lewis number, I derive a new set of coupled equa-
tions for the convective amplitude 8 and the concentra-
tion mode C. Numerical simulations of these equations
show that for small I. the pulse velocity is drastically re-
duced. What is more, the effect of the group velocity s on
the pulse velocity is strongly reduced as compared to the
conventional CGL.

Expanded around the conductive state, the Navier-
Stokes equations together with the equation for the tem-
perature deviation 9 and the concentration field c =g+0
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read in the simplified case of infinite Prandtl number [15]
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FIG. 1. Drift velocity i vs group velocity s for a pulse in the
complex Ginzburg-Landau equation with coefficients d=0. 15
+i, a —0.24, f=0.5, c =2.4+2i, p = —1.65+ 2i, d, . =0.1,
and h2 0.3.

where JV =t)-&8,-
—8,&9- and p denotes the stream func-

tion. For sufficiently negative separation ratio the linear
stability analysis of the conductive state yields a Hopf bi-
furcation. For the following it is crucial to notice that for
vanishing molecular diffusion (L=0) additional critical
modes arise: Any mode (0,0,g(z)) which has no con-
vective or thermal contribution and which depends only
on the vertical coordinate z has a zero eigenvalue. Of
course, these eigenvalues cannot become positive and the
corresponding modes never destabilize the basic conduc-
tive state. Nevertheless, their dynamics is slow and they
cannot be eliminated adiabatically in the limit L 0 at
fixed t.' with R=R, . +e R2. Thus, they constitute addi-
tional dynamical degrees of freedom of the system. To
derive the corresponding amplitude equations one has to
take into account that for nonzero L all of the concentra-
tion modes decay and one need only keep those which are
driven by the convective amplitude A.

To minimize the technical effort I consider here the
case of free-slip-permeable boundary conditions. This al-
lows a simple analytical treatment of the problem which
shows the structure of the problem. No particular sig-
nificance will be attached to the specific values obtained
for the coe%cients in this way. The fields p, 8, and ri are
expanded as

where A and B are the convective amplitudes of right-
and left-traveling waves, respectively. The eigenfunction
of the additional concentration mode C is determined by
the nonlinear coupling term (t).&8„—8„&8-) ri which
drives such a mode. A detailed derivation (using the
scaling L =e L2) will be given elsewhere [17]. The form
of the equations can be derived on symmetry grounds.
Translation symmetry in space and time and reflection
symmetry in space require that the resulting equations
be invariant under the transformations T&„(A,B,C)
=(e'o'"A, e' "B,C), T., (A, B,C) =(e '""A e'""B,C),
and x(A, B,C) =(B,A*,C), which leads up to cubic or-
der to

rl, A+s'il, A =d8 A+(a+fC)A+cAIAI'+gAIBI-', (5)

t), C=d, t),'C+a, C+h a, (IA I-'- IBI-')

+h4(At), A* B*t),B)+(hi+h3C)(IA I
+ IBI '),

and a similar equation for B. The detailed analysis sho~s
that for free-slip-permeable boundary conditions h] =0
=h4 and a, = —4z'-L~. The fact that a, is proportional
to L is a general result independent of the boundary con-
ditions which reflects the linear damping of the concen-
tration mode by molecular diffusion. It is of interest to
note that its time scale is given by the vertical diffusion
time and not a diffusion time related to the length of the
LTW. This is due to the fact that the concentration
mode which is driven by the convective field has zero
vertical average. Thus, for the case of idealized boundary
conditions and infinite Prandtl number discussed here, it
is not the global mean fiow [18] which modifies the dy-
namics. In the general case additional contributions may
arise.

To show the effect of the additional field C, I present
numerical simulations for the case B=0, i.e., for a pure
right-traveling wave which is coupled to the concentration
mode. The lateral boundary conditions are taken periodic
and for simplicity I take h~ =h3=h4=0. The general
case is deferred to later work. I discuss two cases. First
the coefficients are chosen such that the CGL by itself
supports stable pulses [9]. Then the coefftcients are
chosen real, i.e., the Ginzburg-Landau equation for A

alone would not possess any stable localized solutions.
Figure 1 presents the main result. With the coe%cients

of the equation for A chosen as in [9], i.e., the bifurcation
is taken subcritical and the quintic term plA I A is re-
tained, it gives the drift velocity i of the pulse as a func-
tion of the group velocity s for two values of the damping
coeScient a, . (which is proportional to the Lewis num-

ber). The remaining coe%cients are chosen as d2=0,
d~=0, f=0.5, d, =0.1, and h2=0. 3. Note that for large
damping the C mode could be eliminated adiabatically,
C~ 8, IAI~/a, , and one would obtain the conventional
CGL for A alone with changed coeScients (in particular,
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nonlinear gradient terms are also generated). This case is

represented by a, . = —0.1. As to be expected, the pulse

velocity changes essentially by the same amount as the
group velocity, i.e., dv/ds = 1 [cf. (2)] and corresponding-

ly the pulse velocity is only small for a small range of pa-
rameters. If the Lewis number is reduced, however, this
behavior changes drastically: For a,. = —0.02 the drift
velocity is not only significantly reduced but it also de-
pends only weakly on s (dv/ds =—0.3). Such an efl'ect can
clearly not be achieved with a single CGL.

In Fig. 2 the pulse shapes and their concentration fields

are compared for the two different Lewis numbers of Fig.
I (s=0.2). Clearly the C field is more pronounced for
small Lewis number. Its shape makes the reduction in

the pulse velocity rather intuitive. Because of the driving
term t)„(A~ the C field is reduced on one side of the
pulse. This reduces the local growth rate and leads to a
barrier for the pulse. Now, if this barrier is ahead of the
pulse it becomes trapped by its own concentration field.
This effect resembles the interpretation of the numerical
simulations [5]. It is remarkable that the drift velocity
can even be opposite to the group velocity (0 ~ s ~ 0.07).
This may be related to the experimental finding that the
drift velocity can change sign with decreasing Rayleigh
number [16]. On the other hand, if the barrier is in back
of the pulse its drift velocity is not reduced significantly
(s negative) and dt/ds= l. It is striking that the shape
of the convective amplitude ~A~ is barely influenced by
the C field despite its strong effect on the velocity.
Measuring solely the flow velocity would therefore give
little indication of the relevance of the C field in deter-
mining the velocity of the pulse. Thus, measurements
of the local concentration become very important for
analyzing this system [19].

An interesting effect is obtained when increasing the

group velocity above s=0.27. The pulse envelope be-
comes deformed by the trapping and starts to oscillate at
the trailing edge due to the occurrence of phase slips [17].

With real coefficients the Ginzburg-Landau equation

(5) by itself cannot support any stable localized struc-
tures. However, if it is coupled to the c mode this need

not be the case any more. The profile of a stable LTW
obtained in this way is shown in Fig. 3. The group veloci-

ty s pushes the LTW to the right against the barrier
formed by the C mode (C(0 lowers the growth rate).
As a result of the gradient in the growth rate the pulse

actually drifts to the left. Again its velocity depends only

weakly on s.
In conclusion, it was shown that the expansion leading

to the commonly used CGL breaks down when the Lewis

number becomes too small. This is due to a concentra-
tion mode of order e tI„~A~ /L which diverges for L 0
at fixed e. If one keeps this mode as an independent
dynamical variable no divergence occurs. The resulting
coupled equations are very promising. For small Lewis
number they possess generically slow pulse solutions, the
velocity of which depends only weakly on the linear group
velocity. In addition, the C mode allows stable LTW
even for real coefficients. Thus, their stabilization mecha-
nism appears to be different from that of pulses or front
pairs in the (perturbed) nonlinear Schrodinger equation
[10-12]. It resembles that of localized drift waves arising
from a secondary parity-breaking bifurcation. There the
second field is the underlying wave number which also
influences the local growth rate of the wave amplitude.
In combination with the drift of the pattern this leads to
localization [20].

Clearly, more work is necessary. In particular, analyti-
cal results for the pulse velocities and their shapes are
desirable. It is expected that the concentration mode will

have a strong influence on the interaction of pulses. In
particular, bound states of left- and right-traveling pulses
as observed in experiments [16] seem to be possible. In

addition, the stability behavior of extended traveling
waves will be changed by this mean field. Also, the
coefficients should be calculated for realistic boundary
conditions. These questions will be addressed in future
work.
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FIG. 2. Pulse shape for "large" and "small" Lewis number
(s =0.2, other coe%cients as in Fig. 1).

FIG. 3. Localized traveling wave for real Ginzburg-Landau
equation with C field. s=0.8, d=O. l5, a= —0.24, f=l.O,

c =2.4, p = —1.65, d, =0.1, a, = —0.02, and h =0.3.
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