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Topological and Metric Analysis of Heteroclinic Crisis in Laser Chaos
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The power-law behavior of the average time between intermittent bursts in the N MR-laser dynamics
near a heteroclinic tangency crisis is investigated. Using symbolic-dynamical techniques, new crisis-
induced sequences are identihed in the strange attractors reconstructed from both experimental and

simulated data. Our approach provides a precise criterion for the onset of the attractor widening due to
the collision of the stable and the unstable manifold belonging to diA'erent unstable periodic orbits. The
results show the predictability power of our laser model.

PACS numbers: 05.45.+b, 42.65.—k, 76.60.—k

Sudden changes occurring in strange attractors upon
variation of control parameters have been so far dis-
tinguished into three different classes [I]. While the first
and second types of transitions lead either to a destruc-
tion or to a widening of the chaotic attractor, respective-
ly, the third one corresponds to a merging of two or more
strange sets. These transitions are termed "crises" and
are accompanied by a characteristic temporal scaling of
trajectories above the critical point. We concentrate on
the second case, in which the dynamics presents an inter-
mittent bursting out of the phase-space region within
which the attractor was confined before the crisis (core
attractor). The average time r between the bursts of this
so-called "crisis-induced intermittency" [I] obeys the
power law r(p) ee (p

—p, ( "in the vicinity of the critical
value p, of the control parameter p, which marks the on-
set of the crisis. The critical scaling exponent y has been
predicted to lie in the interval [ &, —,

' ] (where the extrema
correspond to the strongly dissipative and conservative
limits, respectively) [I]. At p p, the attractor (the clo-
sure of the unstable manifold of some periodic orbit A)
collides with the stable manifold of an unstable periodic
orbit 8. If A and 8 are just the same orbit, the crisis is
called homoclinic, otherwise, it is called heteroclinic. The
exponent y for the heteroclinic crisis is given by y= 2

+k~/(A, z(, where k~ and Xz are the expanding and con-
tracting Lyapunov exponents of the mediating periodic
orbit, respectively [I].

So far, only a homoclinic tangency crisis has been ob-
served experimentally in an externally driven magneto-
elastic ribbon [2,3]. In the following, we present first ex-
perimental evidence of crisis-induced intermittency via a
heteroclinic tangency, taking advantage of a parametri-
cally modulated NMR-laser system. While such a type
of crisis has already appeared in many previous investiga-
tions on laser chaos near the critical transition point p,
[4], the results of the present Letter quantitatively
characterize the temporal scaling behavior of the orbits.
By analyzing the time series obtained from the experi-
ment and from the extended Bloch-type laser model [4,5]
with symbolic-dynamical techniques, the critical scaling
exponent has been estimated and confirmed through in-

dependent calculation of the Lyapunov exponents. The
accuracy of the method stems from its ability to resolve

neighborhoods of high-order unstable periodic orbits.
The NMR-laser [4] activity is provided by pumped nu-

clear Al spins in a ruby crystal, placed in a static mag-
netic field Bo of magnitude 1.1 T at a temperature of 4.2
K. The total nuclear magnetization M =(M„,Ms, M, )
precesses with the NMR frequency v, =12.3 MHz. The
spin population inversion is obtained by means of a mi-

crowave pump (dynamical nuclear polarization), and the
laser action by enclosing the active medium in a cavity
(in our case, an LC circuit tuned to v, for single-mode
selection). This provides the feedback radiation field B
(proportional to the current in the circuit) necessary for
coherent spin-flip behavior. Furthermore, the cavity is

forced to operate with a sinusoidally varying quality fac-
tor Q(t) Qo(1+pcos2nv I), where p (the control pa-
rameter) is the modulation amplitude and v the modu-

lation frequency. The laser output corresponds to the
voltage across the LC circuit, proportional to the trans-
verse nuclear magnetization amplitude M, =(M„
+My) 'I .

An adequate description of the laser dynamics in the
rotating frame is given by the extended Bloch-type model

[4,S]

x =(r[y —xlf(I')],

y = —y(1+ay)+rx —xz,

z = —bz+xy,
where the overdots represent the derivative with respect
to a rescaled adimensional time t' and x~8&, y~M„
z ee M, —M, . B, denotes the rotating field amplitude and

M, the pump magnetization. The proportionality factors,
as well as the parameters can=4. 875, r 1.807 a:M„and
b =2X10, depend on various physical constants. The
function f(r') =I+pcos(2nv I') describes the parameter
modulation with frequency v .

In order to describe our results in a more general
framework, we use methods of the symbolic-dynamics
theory [6]. This approach includes all the relevant metric
and topological features of the system under investiga-
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tion. Once the attractor has been reconstructed by
embedding the time series in a suitable auxiliary space,
all unstable periodic orbits up to some order n,. „arelo-

calized. A Poincare section is then chosen in such a way
that the same number n of intersections is obtained for all
period-T orbits (T=n/v, ). Finally, a generating parti-
tion is approximated by attributing diAerent symbolic se-
quences to each unstable periodic point (and to their
neighborhoods).

We have collected 14 diITerent experimental time series

f(~,gq, . . . , (~I by sampling the laser output with a fre-

quency v, =4v . They consist of %=10 12-bit integers.
The modulation frequency, kept constant at v =120 Hz,
corresponds to about twice the intrinsic relaxation fre-
quency. The modulation amplitude was varied in the
range between p =0.01800 and p =0.01870 (where
the former value is slightly below the crisis point p,.
=0.01802 and the latter well above it). The exper-
imental data have been reconstructed in an E-dimen-

sional embedding space [7] by forming vectors v; =I(;,
(;+1, . . . , (,+~-ij. The unstable periodic orbits of the

system have been located by looking at portions of recon-
structed trajectories recurring in certain spherical regions
of radius R within distinct time intervals (chosen to be in-

teger multiples of the period of the external forcing
term). The value of R gives the precision with which the
unstable periodic orbits are shadowed. In order to mini-

mize the relative error in the search, R is chosen to be

proportional to the local density of points in phase space
and to the square root of the embedding dimension E.
Tests have shown consistent results for E between 6 and

16. For comparison, the unstable periodic orbits of the
model were extracted by a straightforward application of
the Newton method. Up to order 9, we found complete
correspondence with the experimental results: Not only

do all periodic points have the same symbolic representa-
tions, but also the shapes of the orbits are in close resem-
blance.
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FIG. l. Poincare sections obtained from (a), (a') experiment and (b), (b') model for the parameters (a),(b) p 0.0180 and (a'), (b')

p =0.0185. The intersection points (open circles) of the old unstable period-3 orbit A [(a) and (b)l and of the new period-3 orbit B
l(a') and (b')l are numbered in order of occurrence in time (symbolic sequences 011 and 001, respectively). The solid curves indicate

an approximation to a generating partition with elements 0 and l. Upon magnification, the first two intersection points 1 and 2 in

(a') and (b') can be distinguished as located on opposite sides of the partition.
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FIG. 2. Average time r(p) between successive bursts as a
function of ~p

—p, ), obtained from (a) experiment and (b)
model. The critical exponents (a) y„v~ 1.02~0.05 and (b)
y~ 1.10~ 0.05 are determined from the slopes of the
straight lines obtained by a least-squares fit in a doubly loga-
rithmic scale.

In order to obtain a condensed description of the dy-
namics of the system, Poincare sections have been con-
structed (Fig. I). Successively, we have encoded the in-

tersection points with all extracted unstable limit cycles
by means of a binary partition S [hu, h~], whose ele-
ments are labeled by the two symbols 0 and 1. This par-
tition yields a good approximation to the generating one,
since it is able to encode uniquely all periodic points up to
order 9. Below the crisis, all points belonging to the sub-
set ho are mapped to h~ in one iteration. Therefore, the
string 00 is forbidden and the most condensed description
of the dynamics is given by a binary tree over the two
primitive [Sl words w~ =I and w2=01. After the onset
of the crisis, the string 00 is no longer forbidden and,
hence, the additional primitive word w3 =001 needs to be
introduced. The attractor widening is associated with the
appearance of the new unstable period-3 orbit 8 with la-
bel 001 [Figs. 1(a') and 1(b')], the "old" orbit A having
label Ol I [Figs. 1(a) and 1(b)]. The symbolic signal con-
sists of combinations of w~, w2, and w3. In Fig. 1, the in-
tersection points of the two orbits are shown, numbered in
order of appearance. Experiment and model are clearly

in accordance.
Knowledge of the symbolic dynamics provides a precise

criterion for the detection of the transition. If sequence
00 occurs, the second 0 is part of the new branch; i.e., the
crisis has taken place. Hence, all points contained in ele-

ment 00 in phase space are mapped onto such a region.
They can be reached only from a small neighborhood of
the point marked by a I in Figs. 1(a') and 1(b'). Accord-
ingly, we have estimated the average time r spent in the
old region and determined the critical exponent y from
the slopes of the curves logr(p) vs log(p —p„(,displayed
in Fig. 2. The values obtained from experiment and mod-

el are y,„~t=1.02+ 0.05 and y~~=1.10~0.05, respec-
tively. An independent determination of y has been car-
ried out by evaluating the eigenvalues of a linearized map
around the 3 orbit, for different parameter values: We
obtained y~„.,=l.15~0.10, in agreement with the direct
estimates.

To conclude, we have confirmed the theoretically pre-
dicted scaling behavior of crisis-induced intermittency for
the heteroclinic tangency occurring in the dynamics of
the Q-modu]ated NMR laser, for both experiment and

model. In addition, we have proposed and demonstrated
the feasibility of a detailed symbolic-dynamical descrip-
tion of strange attractors. Our results elucidate so far
hidden aspects of attractor structure near crisis points.
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