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Phase Shifts in Stochastic Resonance
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The response of an overdamped bistable system to a weak periodic force in the presence of external
noise is investigated using linear-response theory and by analog electronic experiment. It is shown,
both theoretically and experimentally, that a phase lag ¢ exists between the force and the response,
and that |¢| passes through a maximum when the noise intensity is tuned through the range where
stochastic resonance occurs. These results clarify the interrelation between stochastic resonance and
conventional resonance phenomena, and confirm that stochastic resonance can usefully be treated

by linear-response theory.
PACS numbers: 05.40.+j, 02.50.+s

A characteristic feature of periodically driven under-
damped oscillators, familiar to all physicists, is the exis-
tence of a phase lag ¢ between the periodic driving force
AcosQt and the periodic response of the system. As 2
is increased gradually from zero and swept through the
resonant frequency g, ¢ decreases monotonically from
zero, passes through —90° when Q = Qp, and approaches
—180° when Q > Q. It is natural to ask, therefore,
whether or not similar phase shifts also occur in stochas-
tic resonance. Stochastic resonance (SR) is a remarkable
phenomenon [1,2] much in the news of late, in which a
weak periodic signal, usually in a bistable system, can be
optimally amplified by the addition of external noise of
appropriate intensity. The answer to this question is less
than obvious because there is still no commonly acknowl-
edged understanding of the nature of SR and its place in
the context of other resonant phenomena. Indeed, it has
been pointed out [3] that SR in bistable systems does
not qualify as a resonance phenomenon at all, in the nor-
mal sense of matching two frequencies. In addition to
its intrinsic interest, the question is also of some funda-
mental importance: This is because the answer holds the
key to a resolution of the controversy over whether [2]
or not [4] SR can usefully be treated as a linear-response
phenomenon within the context of standard statistical
physics.

The presence or absence of phase shifts in SR is a co-
nundrum of many years’ standing. The first prediction
of a phase shift seems to have been due to Nicolis [5] who
concluded that ¢ = — arctan(Q/W(®), where W) is the
sum of the transition rates out of each of the potential
wells of the overdamped bistable system under considera-
tion; similar results were also obtained subsequently for a
two-state model by McNamara and Wiesenfeld [6] and by
Presilla, Marchesoni, and Gammaitoni [7], although the
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latter authors expressed disbelief in their own conclusion.
Jung [8] and Jung and Hanggi [9], on the other hand, re-
portedly [4] failed to find any evidence of phase shifts in
their numerical investigations of SR; furthermore, Gam-
maitoni et al. claimed [4] that analog simulations [7,10]
had ruled out any possibility of there being phase shifts
in SR. Because the reality of such phase shifts follows
automatically from the proposed (2] treatment of SR by
linear-response theory (LRT), Gammaitoni et al. went
so far as to suggest [4] that this was, in itself, a good
reason to doubt the applicability of LRT to SR. After
the present paper had been submitted, Gammaitoni et
al. discovered some evidence for SR phase shifts in an
electron-spin-resonance (ESR) experiment [11], but they
apparently attempted no comparison with the LRT pre-
dictions (2], from which their results would appear to
differ.

In this Letter we report the outcome of a new electronic
experiment that has finally resolved this long-standing
controversy. We demonstrate below, unequivocally and
in considerable detail, both experimentally and theoret-
ically that phase shifts do indeed occur in SR; they do
not, however, take the form predicted by [5-7]. We treat
the simplest nontrivial system: an overdamped Brownian
particle moving in a symmetric bistable potential and, in
addition, driven periodically,

g+ U'(q) = AcosQt + f(t), U(q) = —1¢* + 1¢*,
(1

where f(t) is the zero-mean Gaussian noise of intensity
D,

(FO)f (') =2Dé(t —t') . (2)
We discuss first the behavior predicted by LRT, and then
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compare the predictions with the results of the electronic
experiment. The average value of the coordinate oscil-
lates with a period 27 /Q:

(q(t)) =Y a(n)cos[nQt + ¢(n)] . (3)

n>0

By symmetry arguments [U(q) = U(—q)] the “partial”
amplitudes a(n) and phases ¢(n) with even n are de-
coupled from those with odd n, and therefore the sum
in (3) actually runs over odd n = 2k + 1 only, where
k> 0 is a positive integer. For a weak periodic force
a(2k + 1) o< A%**1 and

a(1) = Ax(Q)],
(4)
¢ = ¢(1) = —arctan [Imyx(2)/Rex(2)]
where x () is the susceptibility of the system [12]. It fol-

lows from (3) that in the spectral density of fluctuations
(SDF),

(A—0),

2

/T dt q(t)exp(iwt)| , (5)

-7

Q(w) = lim (4mr)™!

there arise 6-shaped spikes at frequencies +(2k +1)Q2 be-
cause, according to the principle of the decay of corre-
lations, {(g(t)q(t")y — (q(t)){g(t")) as |t — t'| — oo. The
areas of the spikes are equal to zll-a2(2k + 1). Following
[13] the response of the system is often characterized by
the ratio R of the area of the spike at frequency €2 to the
value Q(©)(Q) of the SDF in the absence of periodic forc-
ing. For weak forcing, (3)—(5) then yield a signal-to-noise
ratio

R =314 x@)P/QY(Q) (4—-0). (6)

The dependences of both the amplitude a(1) and R on
the noise intensity D are known to display bell-shaped
peaks under certain conditions, and it is just this sort
of behavior that constitutes SR. As is shown below, the
phase ¢ = ¢(1) as a function of D can display similar
“resonant” behavior.

For the quasiequilibrium system under consideration,
the quantities x(Q2) and Q(®(Q) in (6) are interrelated
[12] via the fluctuation-dissipation theorem,

2 oo
Rex(w) = EP/O dw1Q (wr)wi (Wi — w?) ™t

(7
Imx(w) = (mw/D)QV (W),

where P implies the Cauchy principal part. They can be
calculated explicitly for relatively small noise intensities
D <« AU, where AU is the depth of the (shallowest) po-
tential well and AU = 1 for the model (1). In this range
Q) (w) and x(w) are given [14] by the sums of contribu-
tions from fluctuations about the equilibrium positions
gn = (—1)™ (n =1,2) and from interwell transitions,
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QVW) = Y waQV (W) + QW)
n=1,2
(8)
x(w) = Z WnXn(w) + Xer(w) -
n=1,2

Here, w, is the population of the nth stable state. The
susceptibilities xn(w) and xt-(w) are expressed in terms
of QI (w), QES)(w) by Eq. (7), and therefore only
the spectral densities will be written down below in ex-
plicit form. For the model (1), w; = wy = 1, ng)(w)
= ng) (w), and x1(w) = x2(w). The spectral density for
the intrawell vibrations QY (w) can be obtained by ex-
panding U(q) about the equilibrium position g,,. Assum-
ing that the nonlinear terms are small, and allowing for
them by perturbation theory, one obtains

QP (W) = Ln(w) — 7L (w)
< [UI) = 02U (4U? + w?) ]
(9)
Ln(w) = (1/m)DU* + w*) ™",

where all derivatives are evaluated for ¢ = ¢, = (—1)".
The contribution from interwell transitions [14,15] is

(@ — ()W ©
W(0)? 1 2

1
QW (w) = —wi1w2 (w<U7y),

WO =wO (D) =w + Wi, (10)

(@ =g, - ipUMUN2.

Here, (q)ﬁo) is the average value of the coordinate in the
nth well neglecting interwell transitions and W,(IQ,)L is the
probability of the transition n — m in the absence of pe-
riodic forcing [corrections [16] ~ D/AU to the Kramers
expression for the transition probabilities are required
in (10)]. In deriving (8) we have utilized the inequality
WO « Q, = U{,, implying that the transition proba-
bilities are very much smaller than the relaxation rate of
the system (...

To the lowest order in D/AU, to zeroth order in 2/Q,,
but for arbitrary Q/W(®), the expressions for R (6) and
for ¢ (4) resulting from (7)—(10) for the model (1) become

7TA2 sz(oﬂ 4 022 o
B= i eworop WP < w® <D,
(11)

(Q/Q,.)(QZW(©® 4+ Q2 D)
QW02 4+ Q2D ’

where Q, = U}/ =Uj = 2. For very small D, where W(©®
< (2/92)D, it follows from (11) that R ~ mA2/4D, ¢
~ —Q/Q,. Thus for a fixed forcing frequency 2, R de-
creases with increasing D, whereas ¢ remains small and

¢ = —arctan
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nearly independent of D.

For larger values of D, it is straightforward to demon-
strate that (11) implies that R will pass through a mini-
mum and then increase again (i.e., onset of the SR phe-
nomenon) until D ~ AU/2, when (8)—(10) are no longer
applicable (see the solid curve in the inset in Fig. 1). We
would comment that the failure of the theory at large D
occurs because the expressions used for Q(®) (w) then be-
come poor approximations; it is not a failure of LRT as
such. We would also comment that the LRT predictions
of an initial fall in R with increasing D and of the exis-
tence of the minimum in R have been observed in many
experiments, were remarked upon and treated in an “ad
hoc” fashion by McNamara and Wiesenfeld [6], but have
not been accounted for quantitatively by any theory of
SR other than LRT [2].

The central interest of the present paper relates, how-
ever, to the behavior of ¢. The LRT prediction for model
(1), based on (8)—(10), is shown by the solid curve in Fig.
1. It is evident that |@| rises steeply from its D — 0 value,
passes through a maximum at D = Dy, < AU, and
then decreases more slowly again with further increase
of D. The analytic approximation (11) is readily shown
to yield the same behavior. In contrast, the variation of
¢ with D as predicted by earlier theories [5-7] that ac-
counted for the phase shift in a two-state approximation
is shown by the dashed line.

These predictions have been tested by means of an elec-
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FIG. 1. The phase shift —¢ (degrees) between the peri-
odic force of amplitude A and the averaged coordinate {(g(t))
measured as a function of noise intensity D in the electronic
experiment for = 0.1 and A = 0.04 (circles) and A = 0.2
(squares). The solid curve is a theoretical prediction based
on LRT and the fluctuation dissipation theorem; the dashed
curve represents the prediction (13) of earlier (two-state) the-
ories [5-7] that make no explicit allowance for the effect of in-
trawell vibrations. The inset compares experiment and LRT
prediction for the normalized signal-to-noise ratio in the re-
gion of the minimum in R.

tronic experiment, using a circuit of conventional design
[17] to model (1); full details will be given elsewhere. It
is immediately evident from the measurements (Fig. 1),
first, that contrary to [4,8-10] large phase shifts do indeed
occur as D is varied and, second, that the LRT predic-
tion describes the data remarkably well. The form of
the phase shifts differs from that predicted by the earlier
(two-state) theories [5-7] . For (1), with the parameters
used in the experiment, a maximum value of —¢ = 68°
is predicted by LRT to occur at Dp.x = 0.08, which is
to be compared with the experimental observation for
A =004 of —¢p = (66 £ 2)° at D = 0.08 + 0.01. In
accordance with the LRT prediction, the decrease of ||
for D > Dpax is much more gradual than the rapid in-
crease seen below Dp,,.. The measured ¢ is relatively
insensitive to A.

It is reasonable to wonder why the variation of ¢ with
D for SR in model (1) should be nonmonotonic (Fig. 1),
whereas the corresponding variation of ¢ with Q in a de-
terministic resonance is well known to be monotonic (as
were also the earlier predictions [5-7] for SR). An answer
is readily inferred by physical intuition. For very small
D <« AU, where the system is effectively confined to a
single well, we may expect ¢ to be small because 2 is
small compared with the reciprocal characteristic time
of intrawell motion; for very large D > AU, where the
double-well character of the potential has become irrele-
vant, we may also expect ¢ ~ 0, for the same reason; so,
at the intermediate values of D where SR occurs, any sig-
nificant phase lag associated with the SR must inevitably
give rise to a maximum in |@|, just as observed. Earlier
theories failed to predict this behavior because, unlike
the discussion above, they are effectively two-state treat-
ments that take no account of the intrawell vibrations.
This is easily seen because, if we now consider only the
interwell transitions, (7) and (10) yield

2 (0)?
Rexis(@ = purws (@) ~ @] groms
(12)
I =1 © @]? W90
mxr(2) = Bwﬂvz [(41) —(g2) ] W(O)Q—W )

from which, using (4), we immediately obtain the original
Nicolis [5] result

¢ = —arctan(Q/W (©®) (13)

shown by the dashed curve in Fig. 1.

Although the observation of the phase lags (above and
in [11]) certainly strengthens the analogy between SR
and conventional forms of resonance, we stress that it is
only an analogy in the case of (1), because [3] there is no
matching of Q2 to any internal characteristic frequency of
the system. This is to be contrasted with SR in under-
damped monostable systems [18], which is a true reso-
nance phenomenon where external noise is used to tune
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the natural oscillation frequency of the system to that of
the periodic force.

The excellent agreement between the LRT prediction
and the experimental phase lag measurements in Fig.
1 can be taken as a vindication of our suggestion [2]
that LRT provides a useful approach to the SR problem.
It has both advantages and disadvantages, as compared
to other theoretical treatments. The main disadvantage
is that it will only yield quantitatively accurate results
when A is small enough for the system to be within its
regime of linear response; but this is, of course, a condi-
tion that is often fulfilled in practice. It should be noted,
however, that the quality of the results obtained will nat-
urally depend on the accuracy of the Q(®)(w) used in (7)
for the calculation of x(€2): Use of a poor approximation
for Q(®(w) must inevitably result in a correspondingly
poor approximation for the predicted response [19).

The advantages of the LRT approach to SR are nu-
merous. In addition to the simplicity of the linear-re-
sponse formalism, we may note the following: (a) This
approach brings a seemingly arcane and very complicated
phenomenon within the general context of standard sta-
tistical physics; (b) unlike any other theory, LRT pro-
vides a quantitative description of R near its minimum
at small D, because it is able to treat the intrawell vi-
brations explicitly; (c) for the same reason, only LRT
describes correctly the phase shifts that we have shown
(above) to occur in SR; (d) LRT is as easily applied to
underdamped systems [3] as it is to overdamped systems
such as (1); (e) for systems that are in thermal equi-
librium or quasiequilibrium, LRT makes it possible to
predict the onset of SR solely on the basis of experi-
mental measurements of Q(®)(w) and its evolution with
temperature (noise intensity), even in cases for which the
response cannot be calculated (e.g., because there is no
simple theoretical model of the system under study); (f)
the predictive power of the LRT approach is enormously
greater than that of earlier theories of SR and has led,
for example, to the discovery [18,20] of quite new kinds
of SR in diverse classes of systems that probably would
not otherwise have been suspected of harboring the phe-
nomenon at all.

In conclusion, we have shown that phase lags indeed
occur in SR, but that the positions of the maxima of ¢
and R as functions of D do not coincide. This result im-
mediately resolves a long-standing controversy and adds
a further dimension to the analogy (cf. Ref. [2]) be-
tween SR and conventional (i.e., deterministic) resonance
phenomena. The excellent agreement obtained between
experiment and the LRT prediction of the phase lag
strongly supports the contention [2] that SR may prop-
erly, and usefully, be considered as a linear-response phe-
nomenon within the conceptual framework of standard
statistical physics.
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