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United Model of Switching and Nonswitching Charge-Density-Wave Dynamics
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We show that the dynamics of both switching and nonswitching charge-density waves can be de-
scribed by the classical Fukuyama-Lee-Rice model when the effects of normal carriers (present for
T) 0) are properly taken into account. We have constructed a circuit representation of the model and
have performed numerical simulations in one dimension. We find switching in the limits of strong pin-
ning or large normal-carrier resistance, consistent with experiment.
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The nonlinear dynamics of sliding charge-density
waves (CDWs) has been studied extensively in the past
fifteen years [1]. Two classes of CDW behavior have
been observed experimentally. Conventional, or "non-
switching, " behavior is characterized by a smooth,
nonhysteretic I-V curve and a unique threshold field for
sliding. Much of the nonswitching behavior is well de-
scribed by the Fukuyama-Lee-Rice (FLR) model [2,3],
which treats the CDW phase as a classical field and ig-
nores amplitude fluctuations of the CDW order parame-
ter.

So-called "switching" behavior [4] is characterized by
an abrupt, hysteretic transition into the sliding state.
Switching was first observed in NbSe3, and subsequently
in other materials such as TaS3, (NbSe4)3 33I, Kp 3Mo03,
and Rb03Mo03. It was observed later that switching
could be induced in NbSe3 by doping with Fe, or by
quenching [5], and that freshly grown samples displayed
switching while aged crystals did not. Based on these ob-
servations, switching in NbSe3 has been associated with
the presence of "ultrastrong" pinning centers. At lower
temperatures, two threshold fields, the lower one non-
switching and the upper one switching, have been ob-
served in semiconducting materials such as Ko 3Mo03,
and also in NbSe3 in the presence of a magnetic field [6].
The hysteresis increases as the temperature is lowered.

There have been a multitude of explanations for
switching behavior [4]. Based on the importance of ul-

trastrong pinning centers, several models of switching
have been proposed in which the dynamics of the CD%
amplitude, ignored in the FLR model, is considered [7,8].
The role of normal carriers is also ignored in most treat-
ments of CDW dynamics. Tucker et al. showed that nor-
mal carriers determine the time scale of dielectric relaxa-
tions of the pinned CDW [9]. Littlewood, elaborating on
a two-fluid model of Sneddon [10], suggested that the in-

clusion of normal carriers could lead to two threshold
fields and bistability of the CDW velocity, as observed in

the semiconducting materials [11]. It was believed that
the inclusion of normal carriers did not alter the form of

yntI(x, t) -KV'y —piig V(x —x;)sin[gx+4( tx)]

—(e/tr)E(x, t),
where yo is the CDW damping constant, I/i is the CDW
elasticity, V(x —x;) is the potential due to an impurity at
site x;, N is the number of impurities, and E(x,t) is the
local electric field. At finite temperature, normal carriers
are excited across the Peierls gap, leading to a linear con-
ductivity o with an Arrhenius temperature dependence.
The total current in the presence of a spatially uniform
external field En (ignoring for simplicity displacement
currents) is

j(x,t) =j cnw(x, t)+jtv (x, i)
= —(e/tr)j (x,t)+oE(x, t) . (2)

Incompressibility and current conservation (V j=0)

the original FLR equations of motion, except to change
the efl'ective damping [10,12].

In this Letter, we show that when the efl'ects of normal
carriers are properly incorporated into the FLR model,
we obtain an additional new global coupling term.
Nonswitching behavior occurs in the limit of very weak

pinning or small normal-carrier resistance. Switching
occurs in the limits of strong pinning or large normal-
carrier resistance. Both limits are consistent with experi-
ment. We show how this model can be understood intui-

tively in terms of an electrical circuit. Numerical simula-
tions in one dimension have been performed, consistent
with our analytical results.

In the one-dimensional FLR model, the charge density
is written as

p(x) =p„+pecos [gx+ p(x, t)], g 2kF,
where p, is the condensate density, po is the CDW ampli-
tude (held fixed), p(x, t) is the CDW phase, and kF is the
Fermi wave vector. The CDW current is given by

j cnw(x, t) = —(e/tr )/tt(x, t) Ign'oring ine. rtial effects, the
FLR equation of motion is
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JcDw(xsr)+JN(x, r) (Jcow4+(JN4,

where ()„denotes a spatial average. Solving for E(x,t),
one obtains

The equations of motion can be written in a discretized
form easily suited to numerical simulation by taking
V(r) Vob(x —x;) and integrating out between impuri-

ties,
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(yu+ y~)P; =Kf/'P;+ Wsin(P; —P;)+ V+ y (p;);, (4) K
where p; represents the CDW phase at impurity site i,
y~ e /ir o is the Ohmic damping constant, L is the aver-

age distance between impurities [15], & tt; —= (P;+ ~

—2p;+p;-~)/L, W—= —ppVp/L, V=— eEp/z, p—;—=Qx; is

a random variable mod2z, and (); denotes an average
over impurity sites i =1,2, . . . , N [16]. We will hence-
forth work in units where 8'=L =1. Viewed in the refer-
ence frame of the moving CDW [11,17], the global cou-

pling term y~(p;(r)); is by definition zero. But the CDW
moving frame is not an inertial one; hence there will be a
"fictitious" force y;(p;(t));. It is for this reason that we

work in the inertial reference frame of the underlying lat-
tice.

While the discretized version of Eq. (1) in the absence
of normal carriers is often depicted in terms of balls and

springs on a washboard, it also has a representation as an
electrical circuit, as is shown in Fig. 1(a) for N=3. The
impurity potential seen by the CDW is represented by
a nonlinear capacitor, which has the Q-V relation V

=sin(p; —P;), where p; represents the charge on the ith
nonlinear capacitor. The domains are coupled by capaci-
tors with capacitance C K ', and are biased with a
constant voltage V. The total CDW current is equal to
the average of the currents through each nonlinear capa-
citor.

Figure 1(a) demonstrates some of the unphysical as-
pects of the FLR model in the absence of normal carriers.
Experimentally, one cannot specify the voltage across
each single domain, nor can one measure the current at
each domain. Rather, one specifies the voltage across the
entire sample, and measures the current, or vice versa.
Also, it is impossible to perform current-driven numerical
simulations of the FLR model, making it difficult to corn-
pare with many experiments. Such difficulties are reme-
died by including normal carriers. Figure 1(b) shows a
circuit representation of Eq. (4). The voltage sources are
replaced by resistors [18] with resistance y~, and the volt-
age across the ends of the network is NV (here, N=3).
The arrow indicates how a local distortion of the CDW is
compensated by a backflow of normal carriers. The cir-
cuit in Fig. 1(b) reduces to that in Fig. 1(a) if one lets y~

approach zero while holding V fixed (although the normal
current becomes infinite).

(b)
3V

FIG. 1. (a) Circuit representation of Fukuyama-Lee-Rice
model with N 3 impurities (see text for discussion). The im-

purity potential seen by the CD% is modeled by a nonlinear

capacitor with V sin(p; —P;), where ti; is the charge on the ith

capacitor. The total CDW current is (ti;(t)1;. (b) Circuit rep-

resentation of Eq. (4). The voltage sources are replaced by
resistors, and a voltage NV is applied across the ends of the cir-
cuit. The arrow indicates how a local CDW current is compen-

sated by a backflow of normal electrons, thus conserving the to-
tal current. This circuit reduces to that in (a) in the limit

y) 0.

One of the consequences of the additional term in Eq.
(4) is switching behavior. The global nature of the cou-

pling term (t[); acts like an effective field which can
"bootstrap" the CDW into a high-conduction state at a
threshold field V, 2. The physical origin of the global cou-

pling can be seen by imagining a situation where the
CDW is pinned and V is close to V, 2. A local current
IIow, as indicated by the arrow in Fig. 1(b), will cause the
voltage to drop across the center domain, thereby increas-
ing the voltage across all the other domains. This situa-
tion is unstable for sufficiently large a=y;/yo, and can
cause the CDW to switch to a high-conduction state.
Once in the conducting state, the CDW can continue to
slide until the voltage is lowered to V&~ ( V, z. We have
performed numerical simulations of Eq. (4) for various
values of a and K in a system with N=50 impurities.
Figures 2(a) and 2(b) plot the time-averaged CDW
current JgDw vs V for various values of a and K. Figure
2(a) shows that V, 2 is independent of a, while Fig. 2(b)
shows that V, ~

is insensitive to K, provided V, ~
is

sufficiently smaller than V, 2.

Figure 3 shows how the size of the hysteresis loop
(V(2 Vg / )/V, ~ varies with a and K. In the strong-
pinning regime, the hysteresis is immeasurably small un-

til a-l. In the weak-pinning regime, the crossover to
significant hysteresis occurs at a larger value of a, and is
a decreasing function of K for fixed a.
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1.5 nipulation of Eq. (4). One can reexpress the global term

by averaging both sides over the impurities i, obtaining
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yp& j;&; =&sin(4; —P;)};+V

and hence,

KV p;+sin(p; —P;)+a&sin(p; —P;));
yodi = +V.1+a

(5)
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FIG. 2. &a) Plot of time-averaged CDW current Jcow vs V

for various values of a and K =0.04 (see text for discussion).
The upper threshold V, 2 is independent of a. &b) Plot of I-V
curves for various values of K and a=10.24. The lower thresh-
old Vi [ is independent of K for Vf] su%ciently smaller than V&2.

4
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Vtl

FIG. 3. Plot of hysteresis as a function of a and K, with

%=50. Measurements were made at each grid intersection.
Hysteresis for strong pinning begins near a =1. For weak pin-

ning, the onset of hysteresis occurs at a much larger value of a,
and is smaller.

Much of the previous analysis of the FLR model car-
ries over to Eq. (4), provided the system is in a particular
pinned state. The reason is simple: In a stable pinned
configuration, yi&p;); =0, and hence, the location of the
singular points in phase space will be independent of a.
So, for example, the FLR arguments concerning the
dependence on the upper threshold field V&2 on K for
a =0 remain valid for a & 0. For K«1 (strong pinning),
the threshold field V, 2=1, while for K»1 (weak pin-
ning), V, 2 cx: K itd in d dimensions [2,3]. Figure 2(a)
shows that V, 2 is indeed independent of a [19] and Fig.
2(b) indicates that V, 2 has the correct dependence on K,
even for large a. Once in the sliding state, the picture
changes dramatically. Estimating V, [ requires some ma-

Equation (6) looks similar to Eq. (4), but now the global
coupling term involves the spatial average of sin(P; —P;).
The time- and space-averaged pinning force is relat-
ed to the time-averaged CDW current JpDw by
&sin(p; —P;));, = yojcow —V. In the pinned state.
&sin(p; —P;)); = —V, and &p;); =0. In the high-field lim-

it, &sin(P; —P;));,= 0 and yo&p;);, = V. The high-field

limit occurs at smaller V for larger a, as can be seen from

Fig. 2(a). The pinning potential is scaled by 1+a, so
that Vl i cc (1+a) ' for a»1. In the limit K ~, one

can view Eq. (5) as an equation of motion for 4(t)
—=&II;(t)); =pj(r), for all j. In the limit a ~, one also
obtains Eq. (5) for %(t) =pj (t ) +cj, where [ciI are
"frozen. " Thus, at low temperatures, the CDW behaves

as a rigid object [11].
Switching behavior is the rule rather than the excep-

tion for the semiconducting CDW materials. As T 0,
yo, dissipation arising from phason-phason and phason-

phonon scattering [20], tends to zero, while yi becomes
exponentially large [14]. In terms of the circuit represen-

tation, this amounts to removing the bottom resistors and

shorting the top ones, leading to a rigid CDW whose
diA'erential resistance becomes zero at threshold. Such
behavior has in fact been observed in K03Mo03 and other
semiconducting materials [21].

We believe that our model also accounts for switching

behavior in NbSe3, although the situation is complicated

by the presence of a chain in the unit cell which remains

metallic at low temperatures. The increase of the hys-

teresis loop width V, 2
—V, ] as temperature is lowered is

consistent with increasing c at fixed K in our model. This
is in apparent conflict with the fact that the normal resis-

tance of NbSe3 decreases as the temperature is lowered.

This conflict suggests that the CDW is screened more
eA'ectively by quasiparticles on the CDW chain than by

normal electrons on a neighboring chain, and that y1 can-

not be simply assigned to the normal resistance in NbSe3.
We believe that the velocity discontinuities, or phase-slip

centers, observed in switching samples of NbSe3 are indi-

cators of strong pinning centers but are not responsible

for switching.
Another consequence of the global coupling term in

Eq. (4) is the nonuniqueness of the sliding state. It has

been shown that the FLR model obeys a so-called "no-

crossing condition" [22], which requires the sliding state
to be unique and the transition to the sliding state to be

nonhysteretic. It is simple to show by construction that
the global coupling term violates this no-crossing condi-
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FIG. 4. Plot of steady-state total current J(t) vs time for two
different initial configurations and identical parameters N =3,
K 0.01, yp 1, and a=1.28. The total current J=1.490 for
the solid curve, and J=1.497 for the dash-dotted curve.

tion, hence allowing multiple sliding states for a fixed
voltage V. Such multiple sliding states are observed nu-

merically for large N, and N as small as 3. Figure 4
shows the total current J(t) versus time for two distinct
sliding states corresponding to V 1.0 in a system with
N 3. The magnitude of the current oscillations (nar-
row-band noise) are larger for the solid curve, but the
time-averaged current is smaller. The effect of added
noise might cause hopping between metastable running
states, yielding long-term Auctuations of the narrow-band
noise frequency, first noticed as such by Bhattacharya et
al. [23].

The generalization of Eq. (4) to higher dimensions
may yield two threshold fields, as observed experimental-
ly. Also, observed diff'erences between current- and
voltage-driven experiments in switching samples may be
borne out by analogous numerical "experiments. " Other
phenomena associated with switching [4], such as period
doubling, negative differential resistance, and delayed
switching, should be explored within the context of this
model. Preliminary numerical experiments show that Eq.
(4) exhibits period doubling, as well as delayed switching
[24]. The global coupling term in Eq. (4) will very likely
have a profound effect on the critical dynamics near
threshold [25], even in parameter regimes where switch-
ing does not occur. This global coupling is present in

many other nonlinear dynamical systems with many de-
grees of freedom, such as Josephson-junction arrays [26]
and coupled laser systems [27], and its nonlinear dynam-
ics should prove to be fascinating.
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